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Abstract. The benefits of combinatorial optimization techniques for
the solution of real-world industrial problems are an acknowledged ev-
idence; yet, the application of those approaches to many practical do-
mains still encounters active resistance by practitioners, in large part
due to the difficulty to come up with accurate declarative representa-
tions. We propose a simple and effective technique to bring hard-to-
describe systems within the reach of Constraint Optimization methods;
the goal is achieved by embedding into a combinatorial model a soft-
computing paradigm, namely Neural Networks, properly trained before
their insertion. The approach is flexible and easy to implement on top of
available Constraint Solvers. To provide evidence for the viability of the
proposed method, we tackle a thermal aware task allocation problem for
a multi-core computing platform.

Keywords: Constraint Programming, Neural Network, Thermal aware
allocation and scheduling

1 Introduction

The benefits of combinatorial optimization for the solution of real-world indus-
trial problems are a widely acknowledged evidence, sitting of an ever-growing
collection of success stories [11, 12, 20]. Yet, the application of optimization ap-
proaches to many practical domains still encounters active resistance by prac-
titioners. A considerable part of the issue stems from difficulties in devising an
accurate representation for the target domain. As matter of fact, many opti-
mization approaches assume the availability of a declarative description of the
system, usually obtained by introducing some degree of approximation; the re-
sulting accuracy is critical for the optimization effectiveness: an over-simplified
model may threat the successful application of the most advanced combinatorial
method. Coming up with an accurate model may be very challenging whenever
there are elements admitting no obvious numerical description, or the system
behavior results from the interaction of a very large number of actors.

In this work, we propose a simple and effective technique to bring hard-to-
describe systems within the reach of optimization methods; the goal is achieved
by embedding a properly trained Neural Network into a combinatorial model.
The Neural Network basically learns how to link decision variables either with
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a corresponding metric or with observable variables or with other decision vari-
ables. Such a hybridization with a soft-computing paradigm allows the model
to accurately represent complex interactions and to handle difficult-to-measure
metrics.

As a host technology, Constraint Programming (CP) represents an ideal can-
didate, thanks to the ability to deal with non-linear functions and the modular-
ity of constraint based models. Specifically, we introduce a novel class of global
Neuron Constraints to capture the behavior of a single Neural Network node.
The ability to incorporate soft-computing system representations marks a dis-
tinguishing advantage of CP over competitor techniques (namely those based on
linear models), increasing its appeal for the solution of industrial problems.

To showcase the proposed approach, we consider a temperature aware work-
load allocation problem over a Multi-Processor Systems on Chip (MPSoC) with
Dynamic Voltage and Frequency Scaling (DVFS) capabilities. DVFS allows the
programmer to slow the pace of one or more processors, to let the system cool
down and become ready to accept more demanding tasks later on. The thermal
behavior of a MPSoC device is the result of the interaction of many concurrent
factors (including heat conduction, processor workload, chip layout). Despite the
dynamic of the single phenomena is known, the complexity of the overall system
makes it very hard to devise a declarative thermal model. In such a context, a
Neural Network can be designed and trained to approximate the system thermal
behavior. The resulting network can then be embedded in a combinatorial model
and used to produce an optimized workload allocation, avoiding resource over-
heating as well as over-usage. We tested the approach obtaining consistently
better result compared to a load balancing strategy guided by a temperature
aware heuristic; moreover, we even improve the results of a very well-performing
surrogate temperature measure.

2 Neural Networks: Background and Definitions

An artificial Neural Network (NN) is a computational system emulating the
operation of a biological neural network; NNs are capable to perform non-linear
computations and can be deployed to perform different tasks by proper training.
NNs are parallel systems, consisting of o set of many interconnected computing
elements; the basic computation block is called artificial neuron and mimics the
behavior of a neural cell, processing multiple electrical input from neighboring
cells to produce a single electrical output. The first simplified neuron models
date back to the 40’ [13]: basically, an artificial neuron is a non-linear function
with vector input x and scalar output y; in detail:

y = φ

(

b+
∑

i

wixi

)

(1)

where xi denotes a single component in x, the argument of φ is known as neuron
activity, b is a bias and φ is called activation function; φ is a monotonic non-
decreasing function, so that inhibitory/excitatory connections between biological
neurons can be respectively modeled as negative/positive weights wi. Artificial
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neurons differ by the type of activation function and can be broadly classified
into threshold, linear/piecewise-linear and sigmoid neurons; for example:

φ(a) =

{

1 if a ≥ 0

0 if a < 0
(2) φ(a) = a (3) φ(a) =

2

1 + e−2a
− 1 (4)

the function in Equation (2) corresponds to a threshold neuron (the classical
perceptron from [19]), Equation (3) corresponds to a linear neuron and Equa-
tion (4) is a sigmoid neuron (hyperbolic tangent). In many cases φ acts as a
squashing function, restricting the output to be in the interval [0, 1] or [−1, 1].

A Neural Network is a system with vector input/output (say x, y) and com-
posed of one or more artificial neurons; each neuron receives input from neighbors
(or from the outside the network, i.e. x) and computes an output signal which is
propagated to other neurons; designated neurons provide the network output y.
A NN can be represented as a directed graph and is said feed-forward in case the
graph is cycle-free, recurrent if at least a loop is present. Feed-forward networks
are usually organized into layers; in this case neurons/nodes in level 0 accept
the input x, neurons in the last layer provide the output y, while each neuron
in the remaining layers (hidden) is connected to all nodes in the previous and in
the next layer; there is no connection between nodes in the same layer.

Weights of a NN are usually decided in a learning stage to match input/output
pairs in a training set; this can be done (e.g.) by means of the back-propagation
process [6, 17]. Depending on the neuron types and the training set, the network
acts as a classifier or performs regression analysis; the network ability to treat
previously unseen input patters (i.e. generalization) depends to a large extent on
the chosen training set. Single layer networks can only match linearly separable
training sets [14]; conversely, multi-layer networks have no such limitation and
can model any R

n → R
m function with finitely many discontinuities [8], pro-

vided the hidden layers have a non-linear activation function and the network is
sufficiently large.

3 Neuron Constraints

The main appeal of Neural Networks stems from their ability to learn the approx-
imate behavior of opaque or very complex systems, without requiring detailed
knowledge of their components and interactions. User intervention is required in
the preparation of the training set, but not in the actual definition of weights.
Once the training stage is over, the network is intrinsically declarative and can
therefore be embedded into a classical combinatorial model. In detail, we pro-
ceed by introducing a novel and simple class of (global) Neuron Constraints,
modeling a single artificial neuron with a specific activation function. Real val-
ued variables are associated to the output and to each component of the input
vector; hence a Neuron Constraint has the following signature:

actfunction(Y, X, w, b)

where ‘actfunction’ denotes the activation function type — i.e. function φ in
Equation (1) —, Y is the output variable, X is the vector of input variables,
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w is the vector of weights and b is the bias. The integration of a trained NN
into a CP model is as straightforward as introducing a Neuron Constraint for
each node, connecting input/outputs variables and setting arc weights. Using a
global constraint for each single neuron rather than for a whole network provides
a fine grained modeling approach, allowing complex networks (even recurrent
ones) to be defined with a limited number of basic components, i.e. a constraint
for each type of activation function. In particular, we have implemented the
activation functions from Equations (2),(3) and (4), corresponding to the Neuron
Constraints ‘hardlim’, ‘purelin’ and ‘tansig’1.

3.1 Filtering for Neuron Constraints

Filtering in a Neuron Constraint can be done by separately tackling the activity
expression and the activation function; namely, Equation (1) can be decomposed
so that we have:

A = b+
∑

i

Xiwi (5) Y = φ(A) (6)

where A is an artificially introduced activity variable. Equation (5) is linear and
poses no issue; function φ is monotonic non-decreasing, so that bound consistency
can be enforced by means of the following rules:

max(A) updated ⇒ max(Y)← max{y′ | φ(max(A)) = y′} (7)

max(Y) updated ⇒ max(A)← max{a′ | max(Y) = φ(a′)} (8)

Rules for “min” are analogous. Observe that, from a mathematical standpoint,
the set {y′ | φ(max(A)) = y′} is a singleton and only contains the value φ(max(A)),
similarly the set {a′ | max(Y) = φ(a′)} is in fact {φ−1(max(Y))} and so on. The
distinction becomes however relevant when finite computing precision is taken
into account. As an example, the filtering rules for the upper bound with tansig
function are:

max(A) upd. ⇒ max(Y)← tansig(max(A))

max(Y) upd. ⇒ max(A)←











tansig−1(max(Y)) if max(Y) ∈]− 1, 1[ (A)

max{a′ | tansig(a) = 1} if max(Y) = 1 (B)

max{a′ | tansig(a) = −1} if max(Y) = −1 (C)

where tansig(a) is as from Equation (4) and tansig−1(y) = 0.5×ln ((1− y)/(1 + y)).
The expressions from case (B) and (C) are implementation dependent constants.
The rules for lower bound filtering are analogous. As an important consequence
of precision issues, an A variable may be unbound even if the corresponding Y

variable is bound; forcing A to be bound would result in an incorrect behavior;
hence the uncertainty due to precision errors should be eventually carried on
in the problem solution. As one can see, aside from precision issues the filter-
ing rules are simple, making the implementation of the approach fairly easy on
off-the-shelf available solvers.
1 The naming convention comes from the MATLAB Neural Network Toolbox.
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4 A Use Case: Thermal Aware Workload Allocation

Providing evidence of the method effectiveness requires a problem with non-
trivial modeling issues; specifically, in this paper we tackle a thermal-aware work-
load allocation problem on Multi Core Systems on Chip (MPSoC); due to the
inherent complexity, the description of the problem and the solution approach
takes an extensive portion of the paper.

4.1 Context and Motivation

Temperature management in MPSoCs is receiving growing research interest in
recent years, pushed by the awareness that the development of modern multi-
core platforms is about to hit a thermal wall. A larger number of cores packed on
a single silicon die lead to an impressing heat generation rate; this is the source
of a number of issues [5] such as (1) the cost of the cooling system; (2) reduced
reliability and lifetime; (3) reduced performance.

Classical approaches include changing the operating frequency, task migra-
tion or core shutdown, triggered when a specified threshold temperature is
reached. This reactive method avoids chip overheating, but may have a relevant
impact on the performance. Hence several works have investigated thermal-aware
workload allocation, making use of mechanisms as DVFS to prevent the activa-
tion of more drastic cooling measures. Those approaches include: (1) on-line op-
timization policies [4, 5, 2, 22], based on predictive models and taking advantage
of run-time temperatures read from hardware sensors; (2) off-line allocation and
scheduling approaches [18, 15], usually embedding a simplified thermal model of
the target platform [16]; (3) off-line iterative methods [1, 21], performing chip
temperature assessment via a simulator (e.g. the HotSpot system [10]).

Capturing the thermal behavior of an MPSoC platform is a tricky task; the
temperature depends on the workload, the position of the heat sinks, thermal
interactions between neighboring cores. This is why off-line approaches rely on
simplified models and often disregard either non-homogeneities due to the floor-
plan or heat transfer between neighboring cores. Iterative approaches overcome
the issue by performing thermal simulation after each iteration, but this prevents
information on the temperature behavior to be directly used in the optimiza-
tion procedure. Despite the dynamic of the single elements concurring to system
temperature is known, the complexity of the overall system makes it very hard
to devise a declarative model: in such a context, however, a Neural Network can
still be designed and trained to approximate the system thermal behavior.

4.2 The Target Problem

Specifically, we address a workload allocation problem on a multi-core system
consisting of a set P of Processing Elements pj (PE); the operating frequency
of each element can be dynamically changed between a minimum and maximum
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value (say fmin, fmax) with a fixed step2; the workload is specified as a set T
of independent 3 tasks ti. As a target system we designed a framework (im-
plemented in MATLAB) for accurate emulation of the temperature evolution
of a multicore platform when executing a sequence of tasks. The optimization
problem consists in the assignment of a PE and an operating frequency to each
task, so that the full workload is executed within a specified deadline and the
final peak temperature is minimized. Higher operating frequencies result in lower
durations, but also higher power consumption and heat generation; PEs are non-
homogeneous from a thermal point of view; custom starting temperatures (say
Tstartj) can be specified for each PE to take into account the case of an already
running system.

4.3 Simulation Framework

The simulation framework has been developed to simulate system evolution,
with specific regard for the thermal transient;, but we also take into account the
dependency of execution time and power consumption on the frequency and the
task properties [3].

Task Duration: We assume task execution time to be frequency dependent, with
cpu-bounded tasks being more sensitive to frequency changes than memory-
bounded tasks; the Clock per Instruction (CPI) metric is a simple and widely
adopted [2] way to estimate the degree of memory boundedness of a task. For
an in-order CPU4, the execution time Di of ti can be expressed as follow:

Di =
1

fmax

·NIi ·

(

fmax

fi
+ CPIi − 1

)

where NIi is the total number of instruction composing the task; fi is the PE
frequency during the execution of ti and CPIi is the average task CPI when
running at maximum frequency. According to this model, each task is there-
fore characterized by an NIi, CPIi pair. The use of cycle accurate simulation
would provide a more detailed duration model, but the corresponding computa-
tional burden is prohibitive with the time resolution needed to identify thermal
transients. We assume a constant operating frequency for each task, even if in
principle it is possible to switch the frequency during execution, since the over-
head induced by recording this information at run-time would be too high.

Power Consumption: We use a model to estimate the power consumption of a
Processing Element, accounting for the dependency on the frequency and the
CPI of the task currently in execution; this is in line with several approaches,

2 This is in line with the real HW DVFS capabilities of today and future MPSoC [9]
that allow frequency to change by steps of hundreds of MHz

3 Independent tasks are common in many scenarios, such as real time OS, web servers,
high performance computing. . .

4 Recent trends in many-core often witness the use of a simple, in-order cores as basic
blocks for the parallel architecture [9]
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showing how to extract a power model directly from an MPSoC by combining
power and performance measurements with data regression techniques [7]. In
detail, our power model has been empirically extracted from measurements per-
formed on an Intel R© server system S7000FC4UR based on the quad-core Xeon R©

X7350 processor, with a maximal frequency of 2.93GHz (see [3]). The resulting
model for a task ti is reported in the following equation, together with the value
of each constant; the static power consumption Wstat is 3 Watt:

Wdyn = kA · fPE
kB + kC + (kD + kE · fPE) · CPIi

kF +Wstat (9)

with:

kA = 3.87 · 10−8 kB = 2.41 kC = 1.10

kD = −4.14 kE = 5.1 · 10−3 kf = −3.02 · 10−1

Thermal Behavior: We use a state-of-the-art thermal simulator to emulate the
system temperature evolution in time and space under different power stimuli
[16, 10]. State-of-the-art simulators start from a representation of the platform
and allocate the input PE power, dissipated in each thermal simulation time
interval over the floorplan. Then the entire surface of the die is spatially dis-
cretized in a two dimensional grid. Each spatial block models a heat source and
is characterized by an intrinsic temperature. This models the bottom surface and
the injection of heat in the target multicore package. In addition, the package
volume is partitioned in cells. Each cell is modeled with the equivalent thermal
capacitance and resistance and connected with the adjacent ones. At each simu-
lation step the R, C thermal-equivalent differential problem is solved providing
the new temperature value for each cell as output. We embed in our set-up the
HotSpot simulator [10], since it is a de-facto standard in MPSoC thermal sim-
ulation. Each time a new task is scheduled the power consumption of each core
is estimated by using the power model and fed to the simulator.

5 Workload Allocation as an Optimization Problem

5.1 Modeling the Thermal Behavior via a Neural Network

The use of a thermal simulator to model temperature dynamics allows our frame-
work to accurately emulate the behavior of a real-world MPSoC system; as a
main drawback, the resulting thermal model is not declarative and cannot be
directly handled via CP. Hence, devising a declarative thermal model is a nec-
essary step if Constraint Optimization is to be applied and Neuron Constraints
provide us an effective tool to deal with the issue.

In detailed we are interested in predicting the temperature after the system
has been running some workload for a specific time span ∆; this depends non-
linearly on the the initial temperature Tstartj and the power consumption Pj

of every PE in the platform, plus the environment temperature Tenv:

Tj = f(Tstart, P , Tenv,∆)
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where Tstart is the vector of initial temperatures and P is the vector with the
average power consumption of each core. The network used to learn such a non-
linear relationship must ideally be as simple as possible to reduce the compu-
tational burden of the optimization problem. We evaluated different topologies
and input configurations: the best trade-off between NN complexity and accu-
racy is obtained by using a feed-forward two-layer neural network for each PE,
with ‘tansig’ neurons in the hidden layer and a single ‘purelin’ one in the output
layer. In detail, the network for PE pj models the function:

‖Tj‖ = g(‖Tstart‖, ‖P‖, ‖P ·∆‖, ‖∆‖)

all network inputs are normalized (see the ‖·‖ notation) and P ·∆ represents the
average consumed energy (i.e. the product between the consumption vector and
the interval duration). Overall, each network has 13 inputs for a 4 core platform;
the hidden layer size is 3/4 of the input number, i.e. 10 neurons in this case.
The network output is the (normalized) predicted temperature for PE pj .

The training and test set consist each of N randomly generated tuples, con-
taining values for the inputs Tstart, P ,∆, Tenv. We then use HotSpot to simulate
the final temperatures Tj corresponding to each tuple. Network training is per-
formed via back-propagation, adjusting weights and bias according to Levenberg-
Marquardt. Figure 1 shows the prediction error for a training and test set of
N = 5000 random elements. One can observe from the plot that the selected
Neural Network provides an estimation error below 0.1oC for more than the 90%
of the validation patterns; moreover, the error prediction is always within ±1oC.
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Fig. 1. Neural Network Test Error histogram
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5.2 Combinatorial Model and Solution process

Now, the workload allocation over a single time interval can modeled as a Con-
straint Optimization Problem, featuring two decision variable arrays P and F

(respectively representing the chosen frequency and processing element for each
task). In detail, let Dmax be the global deadline value, Wmax the maximum
power consumption, let Tenv be the environmental temperature and Tmax the
maximum allowed temperature; let Tstartj denote the initial temperature of pj
and Tj be the final one; then the problem can be formulated as:

min max
pj∈P

Tj

s.t.: Di =
1

fmax

NIi

(

fmax

Fi
+ CPIi − 1

)

∀ti ∈ T (10)

∑

ti∈T

Di · (Pi = j) ≤ Dmax ∀pj ∈ P (11)

WTi = (kA · Fi
kB + kC) + (kD + kE · Fi) · cpii

kF +Wstat ∀ti ∈ T (12)

Wj =
1

Dmax

∑

ti∈T

Di · WTi · (Pi = j) ∀pj ∈ P (13)

for the Neural Network:

NWj = Wj/Wmax, NDj = Dmax, NWDj = NWj ∀pj ∈ P (14)

NTIj = (Tstartj − Tenv)/(Tmax − Tenv) ∀pj ∈ P (15)

NTOj = (Tj − Tenv)/(Tmax − Tenv) ∀pj ∈ P (16)

Neuron Csts between NWj, NDj, NWDj, NTIj and NTOj (17)

with:

Pi ∈ {0, |P | − 1} ∀ti ∈ T

Fi ∈ {fmin..fmax, multiple of 100 MHz} ∀ti ∈ T

Di ∈ [0, Dmax], Ti ∈ [Tenv, Tmax], WTi ∈ [0,Wmax] ∀ti ∈ T

Wj ∈ [0, Dmax], NWj, NDj, NWDj, NTIj, NTOj ∈ [0, 1] ∀pj ∈ P

Basically, real variables Di model task durations; WTi and Wj respectively repre-
sent the power consumption for each task and the average power consumption
for each processor as from Section 4.3; NWj, NDj, NWDj, NTIj are the normalized
inputs to the neural network and correspond to power consumption, duration,
energy and input temperature; NTOj are the normalized network outputs and
Tj are the final temperature variables. Constraints (10) and (12) respectively
correspond to the duration and power model in the simulation framework; Con-
straints (11) and Constraints (13) are the deadline restrictions and average power
computation. Constraints (14) to (16) are normalization formulas. Finally, the
model contains Neuron Constraints matching the structure of the network from
Section 5.1.
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Observe all variable except for the decision ones (i.e. Pi and Fi) are real
valued. Our current implementation is based on Comet 2.1.1, which lacks real
variables support in the CP module; therefore, we use integer variables with a
fixed precision factor and all constraints are formulated so as to avoid rounding
errors. As a consequence, there may be (bounded) imprecision on the final tem-
perature values forecast by the networks: in this case we assume a conservative
approach and pick the worst possible value given the rounding error bound.

5.3 Solution Process

The constraint model has been implemented in Comet 2.1.1 using the CP (rather
than the local search) module and solved by alternating restarts and Large
Neighborhood Search (LNS). In both cases, the base approach is tree search,
with a relatively simple two-stage strategy; in detail:

– Stage 1, PE allocation: search is performed on the Pi variables, by opening
binary choice points:

• the branching variable is selected uniformly at random among those of
the 15% tasks with the smallest number of instructions NIi;

• the value to be assigned on the left-branch is the index of the PE pj
with smallest lower bound for the expression:

∑

ti∈T Di · (Pi = j) (see
Constraints (11) in the model); on the right branch Pi 6= j is posted.

– Stage 2, frequency assignment: once all Pi variables are bound, search is
performed on the Fi variables by domain splitting:

• the branching variable is chosen with the same criterion as in Stage 1;
• let Fi be the selected variable and f∗ be the middle value in its cur-

rent domain; search is performed by opening a binary choice point and
respectively posting Fi ≤ f∗ and Fi > f∗ on the left/right branch.

The main underlying idea is to assign a PE and a frequency to tasks with low NIi
value early in search. The solution initially performs tree search with restarts;
each attempt is capped at 800 fails and the limit grows by 7.5% if no solution
is found. Whenever a solution is reached the LNS loop begins; at each LNS
iteration the incumbent solution is partially relaxed; in detail, tasks are ranked by
decreasing value of the expression NIi ·r (with r a random number in [0, 1]), the
first 60% tasks in the ranking are selected and the corresponding Pi, Fi variables
de-assigned. The the problem is re-optimized with the described tree search
method. Each LNS iteration is capped at 800 fails and the value is increased by
7.5% in case the limit is reached (same as for restarts). Every 3 iterations with
no solution improvement, the process switches back to restarts and so on.

6 Experimental Results

In principle, the embedded neural network should provide the solver with a
powerful model of the system behavior, taking into account the diversity of
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the thermal dynamics of each core and the effect of non-homogeneous start-
ing temperatures; on the other side, the network complexity may lead to poor
propagation and slow down the solution process. To assess the effectiveness of
the proposed approach, we performed an experimental evaluation: our method
was compared to two different variants, making use of simpler (arguably less
accurate) thermal cost functions.

Considered Problem Variants: Due to the tight connection between temperature
and power consumption, in the first considered variant we replaced the temper-
ature minimization from Section 5.2 with a power balancing objective; namely,
we minimize:

max
pj∈P

Wj (18)

in the following, we refer to the original approach as NN and as PP to this first vari-
ant. The resulting combinatorial model is much simpler, as it contains no neural
network; moreover, this surrogate thermal objective performs usually very well,
due to the strong dependency of temperature on power consumption. However,
this approach does not account for non-homogeneous thermal behaviors (e.g.
due to the core location) and still requires an accurate power model with a well
defined structure, which may not be available in many practical situations. In
this case, a Neural Network can still be trained to approximate the thermal be-
havior, while Equation (18) can no longer be used. Therefore, we considered a
second problem variant with a load balancing objective; namely, we maximize
the smallest cumulative duration among the processors:

min
pj∈P

∑

ti∈T

Di · (Pi = j) (19)

we refer to this second variant as HH. In this case, the search strategy is modified
to incorporate some knowledge of the thermal behavior; in particular, the left
and right branches in the frequency assignment stage are inverted depending on
the task CPI. In detail, the solver prefers high frequency values if CPIi ≤ 10,
while low frequencies are given priority if CPIi > 10. The reason is that the
duration of a low CPI task has a strong dependence on the operating frequency,
allowing the heat contribution from static power consumption to be minimized
by reducing the execution time; conversely, high CPI tasks have less elastic
behavior and are best tackled by reducing the dynamic power consumption with
a low frequency assignment. This modification proved very effective for the HH

method behavior.

Input Workload and Target System: we synthesized 40 random workload in-
stances, counting around 50 tasks each. Task durations (in seconds) and CPI
were generated according to a mixed Gaussian distribution, representative of
a mostly computation intensive workload, with a minor portion of memory-
bounded tasks. The NIi values were synthesized so as to keep the system 80%
busy at maximal frequency. We considered two quad core platform, with a 1x4
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Fig. 2. Temperature and power dynamics on a single experiment

(linear) and 2x2 (square) floorplan; frequencies range between 1600 and 2900
MHz and the global deadline Dmax is 10 seconds. The choices are representa-
tive of a server system, regularly accepting a typical workload to be dispatched
before the next arrival.

We computed optimized workload allocation and frequency assignments for both
the target platforms, by running each approach for 90 seconds on an Intel Core 2
T7200, 2GHz; the resulting solutions were executed on the simulation framework,
with all cores starting from a room temperature of 26.5◦C. Since all considered
variants make use of approximated thermal model, there is no theoretical guar-
antee for the dominance of one approach over another: the use of simulation to
evaluate the results ensures a fair comparison and a reliable effectiveness assess-
ment. Moreover, since the optimized solution are evaluated via simulation, the
results are unaffected by any numerical issue in the models.

The typical thermal behavior exhibited by the NN approach solutions is de-
picted in Figure 2, showing both temperature and power dynamics for a single
experiment; each line in the graphs corresponds to a PE: as one can see, after
an initial transient behavior the temperature becomes pretty stable, thanks to
the thermal aware allocation.

Next, we compared the final (simulated) peak temperature obtained by each
of the considered approaches; the results are shown in Figure 3, depicting for the
40 instances the distribution (histogram) of the difference THH−TNN (in dark grey)
and TPP − TNN (in light grey). For the considered configuration, discrepancies of
around 1-2◦C were found to be already significant; as one can see, the network
based approach is consistently better than the HH one and even improves (on
average) the PP approach, which is known to use a very good temperature proxy
measure.
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Fig. 3. Difference from NN in final peak temperature for the HH (dark grey) and the PP
(light grey) approach
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Fig. 4. Difference from NN in final peak temperature for the HH (dark grey) and the PP
(light grey) approach – pre-heated platform

In order to investigate the effect of non-homogeneity, we performed a sec-
ond evaluation after having asymmetrically pre-heated the target platforms; in
this case the starting temperature for each core are 31.05◦C, 33.55◦C, 35.75◦C,
36.48◦C. The resulting differences in the final peak temperature are shown in
Figure 4; as one can see the advantage of the NN approach becomes more rel-
evant, due to the inability of the surrogate objective functions to capture the
initial asymmetry.

Finally, Figure 5 is a scatter plot representing, for a sample workload in-
stance, the assigned operating frequency and the CPI of each task in the NN

and the HH solution; as one can see, the two plot are very similar, with low CPI
tasks receiving high operating frequencies and high CPI ones usually running at
1600 MHz: as discussed earlier, this is a reasonable choice. However, while such
information was fed to the HH approach by customization of the search strategy,
the same relation has been learned by the Neural Network and enforced via prop-
agation; by generalization of this reasoning, we conjecture a properly designed
network has the chance of greatly reducing the effort in search strategy tuning.
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Fig. 5. (Frequency, CPI) values for each task in sample solution, for the NN and the HH
approach.

7 Conclusions

We have introduced the idea of hybridizing Constraint Programming with a soft-
computing paradigm, namely Neural Networks, to model complex real world
problems; the novel Neuron (global) Constraint class provide a simple and yet
effective tool to incorporate a trained network into a declarative CP model. As
an important consequence training and designing the network becomes part of
the modeling process; this involves deciding the parts of the target system to
be represented via soft-computing and those to be tackled by more traditional
means. To provide some evidence of the approach viability, we tackled a realistic
thermal-aware workload allocation problem, with promising results.

Future research directions include experimentation with different real world
problems, to investigate the applicability and effectiveness of the Neural Net-
work integration approach to a broader set of target domains. Moreover, we
are interested in improving the use of the Network provided information, e.g.
search heuristics based on weight and connection structures could be designed.
Finally, we plan to investigate the generalization of the approach to different
soft-computing paradigms.
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