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Abstract Local branching is a general purpose heuristic method which searches lo-
cally around the best known solution by employing tree search. It has been success-
fully used in Mixed-Integer Programming where local branching constraints are used
to model the neighborhood of an incumbent solution and improve the bound. We pro-
pose the integration of local branching in Constraint Programming (CP). This inte-
gration is not simply a matter of implementation, but requires a number of significant
extensions. The original contributions of this paper are: the definition of an efficient
and incremental bound computation for the neighborhood, a cost-based filtering al-
gorithm for the local branching constraint and a novel diversification strategy that can
explore arbitrarily far regions of the search tree w.r.t. the already found solutions. We
demonstrate the practical value of local branching in CP by providing an extensive
experimental evaluation on the hard instances of the Asymmetric Traveling Salesman
Problem with Time Windows.
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1 Introduction

Local branching is a successful search strategy in Mixed-Integer Programming
(MIP) (Fischetti and Lodi 2003) which is present in the current implementation of
IBM-Cplex.1 It is a general purpose heuristic method which searches locally around
the best known solution by employing tree search. Local branching has similarities
with Limited Discrepancy Search (LDS) (Harvey and Ginsberg 1995) and performs
local search in an iterative way. The neighborhoods are obtained by linear inequali-
ties in the MIP model so that MIP searches for an improving solution within a certain
“distance” (Hamming distance in case of 0-1 problems) with respect to the incumbent
solution. The linear constraints representing the neighborhood of incumbent solutions
are called local branching constraints and are involved in the computation of the prob-
lem bound. Local branching is a general framework to effectively explore solution
subspaces, making use of state-of-the-art MIP solvers. Even though the framework
aims to improve the heuristic behavior of MIP solvers, it offers a complete method
which can be integrated in any tree based search. In fact, local branching is a gen-
eral technique applicable to any optimization problem modeled with constraints in
contrast to many local search techniques designed and tailored only for specific prob-
lems.

In this paper, we propose the integration of the local branching framework in Con-
straint Programming (CP). The main motivation is to combine the power of constraint
propagation and problem bound with a local search method which is applicable to any
optimization problem and potentially complete, i.e., it is able to obtain the optimal
solution and prove its optimality, if no fail/time limit is imposed. Integrating local
branching in CP is not simply a matter of implementation but instead requires signif-
icant extensions to the original search strategy. We claim such modifications as the
original contributions of this paper and list next.

– First, using a linear programming solver for computing the bound of each neigh-
borhood is not computationally affordable in CP. We have therefore studied a
lighter way to compute the bound of the neighborhood which is efficient, effec-
tive and incremental, using the additive bounding technique, see Fischetti and Toth
(1989).

– Second, we developed a cost-based filtering algorithm for the local branching con-
straint by extracting reduced-costs out of additive bounding, see Focacci et al.
(2002a).

– Third, we have studied a CP-tailored diversification technique that can push the
search arbitrarily far from the current incumbent solution whenever needed.

All these aspects have been thoroughly tested on a set of instances of the Asym-
metric Traveling Salesman Problem with Time Windows (ATSPTW) (Desrosiers et al.
1995). Our experimental results demonstrate the practical value of integrating local
branching in CP. The results can be summarized as follows: (i) on small-size in-
stances where pure CP proves optimality, we find the optimal solution in a shorter
time and prove optimality quicker, (ii) on medium-size instances, we sometimes can

1IBM ILOG CPLEX: http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

http://www.ibm.com/software/integration/optimization/cplex-optimizer/.
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prove optimality where CP fails, (iii) on large-size instances, where both methods fail
to prove optimality, we obtain a better solution quality within the same time limit.
Moreover, we obtain even better results when compared with LDS (pure and enriched
with bound computation) and with pure local search.

2 Formal background

A Constraint Programming model is defined on a set of variables X = [X1, . . . ,Xn],
each with a finite domain D(Xi) of values, and a set of constraints specifying allowed
combinations of values for subsets of variables. A feasible solution X̄ = [X̄1, . . . , X̄n]
is an assignment of X satisfying the constraints. The CP solution process interleaves
propagation and search: it explores the space of partial assignments using a backtrack
tree search, enforcing a local consistency property using either specialised or general
purpose propagation algorithms. In the following, we focus on minimization prob-
lems where a cost Ci,j is associated to each variable value assignment Xi = j and
we want to minimize C = ∑

i∈N Ci,Xi
where N = {1, . . . , n}.

In optimization problems, even if a value in a domain can be part of a feasible
solution, it can be pruned if it cannot be part of an optimal solution. This pruning
technique is called cost-based filtering (Focacci et al. 2002a). Starting from a problem
lower bound LB and from a gradient function grad(i, j) that gives for each variable
Xi the marginal increase in cost of assigning the value j in a solution, we can prune a
value from the domain of a variable if LB + grad(i, j) is greater than the value of the
incumbent solution. A valid gradient function is represented by reduced-costs in lin-
ear programming. A reduced cost associated with a variable represents the additional
cost to pay if such variable increases its value in the optimal solution of 1 unit.

It is a common practice to use tree search methods to solve optimization problems,
exploiting carefully tuned successor ordering heuristics to guide the search towards
promising regions. When the heuristics guide the search to a failure state, backtrack-
ing is performed up to an open decision point, where the choice performed by the
heuristics is reverted. We call this alternate choice a “wrong turn”. Limited Discrep-
ancy Search (LDS) (Harvey and Ginsberg 1995) addresses the problem of limiting
the number of “wrong turns” (i.e., discrepancies) along the way, exploring portions
of the search space at increasing discrepancy values w.r.t. a given successor order-
ing heuristics. These regions at increasing discrepancy k are the so-called k-distance
neighborhoods of the solution proposed by the heuristics.

When dealing with optimization problems for which we have an incumbent so-
lution X̄ having cost CX̄ , LDS works by trying to reduce the cost of the incumbent
solution, exploring the k-distance neighborhood of X̄ via tree search. A main draw-
back of LDS is that, for large problems, exploring neighborhood at high discrepancy
(high values of k) is very time consuming.

Finally, we introduce a mapping between CP and 0-1 Integer Programming (IP)
models, which will be used to understand peculiarities of problem structure. We de-
fine a directed graph G = (N,A) where arc (i, j) ∈ A iff j ∈ D(Xi). We assume
D(Xi) ⊆ N . The corresponding IP model contains binary variables xij s.t. xij = 1 ↔
Xi = j ; a feasible solution X̄ is thus represented as x̄, where x̄ij = 1 ↔ X̄i = j .
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Fig. 1 The basic local
branching framework

The cost to be minimized becomes
∑

i∈N

∑
j∈D(Xi)

cij xij , where cij = Ci,j when
Xi = j .

3 Local branching search strategy in MIP

Local branching is a successful search method proposed for 0-1 MIP (Fischetti and
Lodi 2003) which is in the current implementation of IBM-Cplex.2 The idea is that,
given a reference solution to an optimization problem, its neighborhood is searched
with the hope of improving the solution quality, using tree search. After the optimal
solution in the neighborhood is found, the incumbent solution is updated to this new
solution and the search continues from it. The basic machinery of the framework
is depicted in Fig. 1. Assume we have a tree search method for solving an opti-
mization problem P whose constrained variables are X. For a given positive integer
parameter k and a given reference solution X̄, the k-OPT neighborhood N (X̄, k)

is the set of feasible solutions of P satisfying the additional local branching con-
straint Δ(X, X̄) ≤ k. This constraint defines the neighborhood of X̄ by the space
of assignments which have at most k different values; the disjunction associated with
belonging or not to the neighborhood is used as a branching criterion. More precisely,
the solution space associated with the current branching node is partitioned by means
of the disjunction Δ(X, X̄) ≤ k ∨ Δ(X, X̄) ≥ k + 1. In this way, the whole search
space is divided into two, and thus exploring each part exhaustively would guarantee
completeness. The neighborhood structure is general-purpose in the sense that it is
independent of the problem being solved.

2Note that the way in which local branching is implemented in Cplex differs from the one described in the
following, see Danna et al. (2004) for details.
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In Fig. 1, each node of the resulting search tree is labeled with a number. The
triangles marked by the letter “T” correspond to the branching sub-trees to be ex-
plored. In Fischetti and Lodi (2003), branch-and-bound MIP search is used as tree
search method on the sub-trees. The neighborhoods are obtained by imposing linear
inequalities in the MIP model.3 The use of linear constraints in the MIP model clearly
provides a tighter bound w.r.t. the one of the original problem.

4 CP-based local branching

The local branching framework is not specific to MIP. It can be integrated in any
tree search strategy. We argue that integrating local branching in CP merges the ad-
vantages of the intensification and diversification mechanisms specific to local search
methods, with constraint propagation that speeds up the neighborhood exploration by
removing infeasible variable-value assignments.

The basic scheme of local branching in CP is similar to the one of MIP: a CP
model is used to find a first reference solution X̄1. Then a neighborhood N (X̄1, k) is
searched at the Hamming distance k w.r.t. the reference solution by adding to the CP
model the local-branching constraint Δ(X, X̄1) ≤ k, where X̄1 is an assignment of X

representing the current reference solution and k is a non-negative integer value. The
constraint holds iff the sought assignment of X has at most k different values than X̄1.
It can easily be encoded and propagated by exploting the concept of reification; a
reified constraint c ↔ (b = 1) reflects if the constraint c holds into a Boolean variable
b, meaning that c holds iff b = 1. In our case we reify pairwise equivalences Xi = X̄1i

to Boolean variables Bi and then we post a sum constraint on them. The CP model
we consider for the neighborhood is:

min
∑

i∈N

Ci,Xi
(1)

s.t. AnySide_cst(X) (2)

Δ(X, X̄1) ≤ k (3)

Xi ∈ D(Xi) ∀i ∈ N (4)

where Ci,Xi
is the cost of assigning variable Xi and AnySide_cst(X) is the set of

constraints of the original problem on domain variables X. As a consequence, neigh-
borhood exploration via CP clearly benefits from constraint propagation.

The neighborhood can be explored either exhaustively, or up to the first feasible
improving solution (if it exists) or stopped after a time or fail limit.

If the neighborhood is explored exhaustively and contains improving solutions,
the best one is returned, namely X̄2. Then, the local branching constraint is reversed
to Δ(X, X̄1) ≥ k + 1, as in the MIP scheme, and the search now proceeds around
the neighborhood of X̄2 by imposing Δ(X, X̄2) ≤ k. Otherwise, if X̄2 is the first

3Note that this is trivial in the case the X variables are binary, while it requires much more work for general
integer problems; see Fischetti and Lodi (2003) for details.
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improving solution and the neighborhood has not been explored exhaustively, the
reversed local branching constraint is simply a no-good imposing [X1, . . . ,Xn] 	=
[X̄11 , . . . , X̄1n] and the search again proceeds around the neighborhood of X̄2.

When the neighborhood is proved to contain no improving solution or a time or
fail limit is reached without any improving solution, we diversify search and explore
other parts of the search tree so as to find new feasible solutions and continue lo-
cal branching thereafter. Within this schema, which resembles the local branching in
MIP, we propose three original contributions that enable us to smoothly accommo-
date local branching in the CP machinery and to exploit its constraint propagation
mechanism.

Bound of the neighborhood It is well known that having a tight problem bound
enables the removal of sub-optimal regions of the search tree. Indeed, if the bound
is not better than the best solution found so far, the exploration can be interrupted as
the sub-tree contains no improving solution. We are interested in computing a bound
for the original problem plus a local branching constraint. While in MIP we compute
the linear relaxation of the problem within the neighborhood, we have found this is
not computationally affordable in CP. We have therefore studied a computationally
cheaper way to compute a bound of the neighborhood, based on additive bounding.
The bound computation is efficient, effective and incremental and integrated into the
local branching constraint. This contribution will be described in Sect. 5.

Cost-based filtering In CP, global constraints are in general used to remove prov-
ably infeasible variable-value assignments. Cost-based filtering (Focacci et al. 2002a)
is an additional capability that enables the removal of provably suboptimal variable-
value assignments. Cost-based filtering can be applied when reduced-costs are avail-
able. Its use in CP is more aggressive than that in MIP, where it is known as variable
fixing. We show how we can extract reduced-costs from an additive bounding proce-
dure applied to the local branching constraint. This contribution will be described in
Sect. 6. On top of reduced costs, we have defined an incremental recomputation of
the bound triggered by domain changes and assignments.

Diversification When a neighborhood is proved to contain no improving solution or
a time or fail limit is reached without any improving solution, the search can be diver-
sified so as to find a new solution and restart local branching thereafter. In Fischetti
and Lodi (2003) the neighborhood is enlarged by changing k and/or by relaxing the
constraint which enforces that new solutions should improve the best one. We can-
not enlarge the neighborhood too much as the size of the search space, and thus the
computational effort needed, would grow too quickly to explore it effectively. This
is due to the fact that we explore the neighborhoods in an LDS fashion, and explor-
ing high discrepancy neighborhoods with LDS is very time consuming when dealing
with large-scale problems. We here propose a new CP-tailored diversification scheme
which collects all the solutions found so far, selects heuristically a given percentage
of variables and imposes constraints of difference on these variables. Such constraints
enforce that the variables take values different from those they have taken in the cur-
rent solutions. By playing with the heuristic choice of variables and the number of
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variables chosen, it is possible to tune the technique in a number of different ways.
Note that the use of constraints would not be effective in local branching in MIP,
hence this simple technique is CP-tailored and enables us to search in the regions
arbitrarily far from the set of already found solutions. This contribution will be de-
scribed in Sect. 7.

5 Bound of the neighborhood

The purpose of this section is to exploit the local branching constraint, that implicitly
represents the structure of the explored tree, so as to tighten the problem bound. To
this purpose, we have developed a novel constraint called lb_cst(X, X̄, k,C) which
combines together the discrepancy constraint Δ(X, X̄1) ≤ k (Eq. 3) and the cost func-
tion C = min

∑
i∈N Ci,Xi

(Eq. 1). Using this constraint alone provides very poor
problem bounds, and thus poor filtering. If instead we recognize in the problem a
combinatorial relaxation Rel which can be solved in polynomial time and provide a
bound LBRel and a set of reduced-costs c̄, we can feed the local branching constraint
with c̄ and obtain an improved bound in an additive bounding fashion.

Additive bounding is an effective procedure for computing bounds for optimiza-
tion problems (Fischetti and Toth 1989). It consists in solving a sequence of relax-
ations of P , each producing an improved bound. Assume, we have a set of bounding
procedures B1, . . . ,Bm. We write Bi(c) for the ith bounding procedure when ap-
plied to an instance of P with cost matrix c. Each Bi returns a lower bound LBi and
a reduced-cost matrix c̄. This cost matrix is used by the next bounding procedure
Bi+1(c̄). The sum of the bounds

∑
i∈{1,...,m} LBi is a valid lower bound for P . An ex-

ample of the relaxation Rel is the Assignment Problem if the side constraints contain
an alldifferent (Focacci et al. 2002a). Another example is a Network Flow Problem
if the side constraints contain a global cardinality constraint (Regin 2002). Clearly, a
tighter bound can always be found feeding an LP solver with the linear relaxation of
the whole problem, including the local branching constraints, as done in Fischetti and
Lodi (2003). We have experimentally noticed that this relaxation is computational too
expensive to be used in a CP setting.

To explain how additive bounding can improve the bound obtained by local
branching constraints, we use the mapping between CP and IP models described in
Sect. 2. Note that this model is useful to understand the structure of the problems we
are considering, but it is not solved by an IP solver. We devise a special purpose linear
time algorithm as we explain next. The additive bounding procedure uses two relax-
ations, namely Rel and Loc_Branch. The latter considers the lb_cst(X, X̄, k,C). The
solution of Rel produces the optimal solution X∗, with value LBRel and a reduced-
cost matrix c̄. We can feed the second relaxation Loc_Branch with the reduced-cost
matrix c̄ from Rel and we obtain:

LBLoc_Branch = min
∑

(i,j)∈A

c̄ij xij (5)

s.t.
∑

(i,j)∈S

(1 − xij ) ≤ k (6)
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xij ∈ {0,1}, ∀(i, j) ∈ A (7)

where S = {(i, j)|x̄ij = 1}. To have a tighter bound, we divide this problem into k

problems corresponding to each discrepancy from 1 to k and transforming the con-
straint 6 into

∑
(i,j)∈S(1 − xij ) = d with d = 1 to k. The optimal solution of each

of these sub-problems can be computed as follows. We start from X̄ = [X̄1, . . . , X̄n]
and then extract and sort in non-decreasing order the corresponding reduced-costs
c̄sorted = sort(c̄1X̄1

, . . . , c̄nX̄n
). The new bound LBLoc_Branch is the sum of the first

n − d smallest reduced-costs from c̄sorted . Overall, a valid bound for the problem is
LB = LBLoc_Branch + LBRel. One can see that only a subset of the domain variables is
used to compute the solution; the model can be simplified, as we will show in Sect. 6.
The use of the additive bounding here is different from its use in Lodi et al. (2003),
because we are starting from a reference solution X̄ which is not the optimal solution
X∗ computed by the first relaxation.

As an example, consider we have [X1, . . . ,X5] each ranging on the domain
{1,2,3,4,5} with the constraint alldifferent([X1, . . . ,X5]). In this case, Rel is the
Assignment Problem (AP). Assume the AP solution is [2,1,3,5,4] with the optimal
value LB1 and with the reduced-cost matrix c̄:

c̄ =

⎡

⎢
⎢
⎢
⎢
⎣

3 0 2 4 5
0 3 4 1 2
2 1 0 2 1
5 2 3 2 0
4 1 3 0 5

⎤

⎥
⎥
⎥
⎥
⎦

One can see that the assignments corresponding to the AP solution have a reduced
cost c̄ij = 0, while other assignments have a cost greater than zero. Consider an initial
assignment X̄ = [4,2,3,1,5] and that we have d = 3, which means the new solution
must have three different assignments w.r.t. X̄, and conversely keeping two variable
assignments the same. Note that constraint 6 is conveniently rewritten as

∑

(i,j)∈S

xij = n − d = 2

which means that we “pay” in the objective function only the reduced costs of the
(two) variables whose assignment is kept as it is, i.e., xij = 1. Then, we first extract
the reduced costs of the values in this assignment, which is [4,3,0,5,5], and we
sort this array c̄sorted = [0,3,4,5,5]. Because we need to keep two variable assign-
ments of X̄ the same, we choose those that give us the minimum increase in cost.
So, we take the first two reduced-costs in c̄sorted , and add their sum (i.e., 0 + 3 = 3)
to LB1 to obtain a valid lower bound. As for the remaining three variables, they can
always be assigned to values having zero reduced cost, hence not contributing to the
computation of the bound.

6 Cost-based filtering

After computing the lower bound LB in an additive way as LB = LB1 +LB2, we need
an associated reduced-cost matrix so as to apply cost-based filtering (Focacci et al.
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2002a), i.e., we have to compute the reduced-cost matrix of the problem:

LB2 = min
∑

(i,j)∈S

c̄ij xij (8)

s.t.
∑

(i,j)∈S

xij = n − d (9)

xij ∈ [0,1] ∀(i, j) ∈ S (10)

This problem is a simpler version of problem 5–7 obtained by removing variables
xij ,∀(i, j) 	∈ S, and relaxing the integrality requirement on the remaining variables.
(More precisely, it is a simpler version of its d-th sub-problem in which constraint 6 is
written in equality form.) It is easy to see that the two problems are indeed equivalent.
First, the integrality conditions are redundant as shown by the algorithm presented in
Sect. 5 to solve the problem. Second, because the variables xij , (i, j) 	∈ S do not
contribute to satisfy constraint 9 they can be dropped to 0 because their reduced costs
are non-negative. The dual of such a linear program is as follows:

LB2 = max

[

(n − d)π0 +
∑

(i,j)∈S

πij

]

(11)

π0 + πij ≤ c̄ij , ∀(i, j) ∈ S (12)

πij ≤ 0, ∀(i, j) ∈ S (13)

Let us partition set S into Smin containing the n − d pairs (i, j) having the smallest
reduced costs and Smax containing the remaining d pairs. We also define c̄max =
max(i,j)∈Smin c̄ij . Then, it is not difficult to prove the following result.

Theorem 1 The dual solution (i) π0 = c̄max, (ii) πij = 0,∀(i, j) ∈ Smax, and
(iii) πij = c̄ij − π0,∀(i, j) ∈ Smin is optimal for system 11–13.

Proof The above solution is trivially feasible because for (i, j) ∈ Smax all reduced
costs are by definition greater or equal to the largest one in Smin and for (i, j) ∈ Smin
we have an identity. Thus, both Eqs. 12 and 13 are satisfied. Moreover, we can see
that our solution is optimal by comparing the objective function value of systems 11–
13 and 8–10. Substituting our dual solution into Eq. 11 and noting that the cardinality
of Smin is n − d , we see that the optimal objective function value is

∑
(i,j)∈Smin

c̄ij .
This is the same as the optimal objective function values of system 8–10, as seen by
setting xij to 1 for (i, j) ∈ Smin and 0 otherwise. �

The reduced-cost matrix ĉ associated with the optimal solution of system 8–10 is
then constructed as (i) ĉij = 0,∀(i, j) ∈ Smin, and (ii) ĉij = c̄ij − c̄max,∀(i, j) ∈ Smax.
The reduced costs of variables xij , (i, j) 	∈ S do not change, i.e., ĉij = c̄ij .

6.1 Incremental computation of the bound

While exploring the sub-trees, decisions are taken on variable instantiation and as a
consequence constraints are propagated and some domains are pruned. We can there-
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fore update the problem lower bound by taking into account the most recent situation
of the domains. The challenge is to do this in an incremental way, not incurring much
extra overhead. The first bound LB1 can be updated in the traditional way: each time a
value belonging to the optimal AP solution is removed, the AP is recomputed with an
O(n2) algorithm (which consists in a single augmenting path) (Focacci et al. 2002a).
Using the new AP solution, we can update the second bound LB2 in a simple way by
using some special data structures.

Consider the sets Smin and Smax defined previously. More precisely, Smax initially
contains d ordered pairs (i, j) corresponding to the variable-value assignment of the
d greatest reduced-costs from c̄sorted . Instead, Smin contains the n − d ordered pairs
(i, j) corresponding to the n − d smallest reduced-costs from c̄sorted . Whilst Smin
contains the assignments (variable index-value) that should remain the same w.r.t.
X̄ because they have the smallest reduced costs, Smax contains the assignments that
should change w.r.t. X̄ and that conceptually assume a value corresponding to a 0
reduced cost. Note that initially there are n pairs whose first index goes from 1 to n

in Smin ∪ Smax.

6.1.1 Assignment of j to Xi

We distinguish four cases:

(1) (i, j) ∈ Smax. A variable that was supposed to change w.r.t. X̄ is instead assigned
the value in X̄. We must update Smin and Smax, making sure they remain sorted,
as well as update LB2. To do this, we (a) remove (i, j) from Smax; (b) remove
(h, k) = arg max(m,n)∈Smin

c̄mn from Smin and add it ordered in Smax; (c) LB2 =
LB2 + c̄ij − c̄hk .

(2) (i, k) ∈ Smax with k 	= j . A variable that was supposed to change w.r.t. X̄, indeed
changes. In the bound, this variable assumed a value corresponding to a 0 reduced
cost, while now it assumes the value j whose reduced cost c̄ij may or may not
be 0. We update LB2: LB2 = LB2 + c̄ij .

(3) (i, j) ∈ Smin. No changes are necessary because a variable that was supposed to
remain the same w.r.t. X̄ remains the same.

(4) (i, k) ∈ Smin with k 	= j . A variable that was to remain the same w.r.t. X̄ in-
stead changes. We update Smin and Smax as well as LB2. We (a) remove (h,p) =
arg min(m,n)∈Smax

c̄mn from Smax and insert it in the last position of Smin; (b) re-
move (i, j) from Smin; (c) LB2 = LB2 − c̄ij + c̄hp .

Using the example at the end of Sect. 5, we analyze in depth the four cases. We
are given the reduced-cost matrix c̄ described in Sect. 5 and an initial assignment
X̄ = [4,2,3,1,5] having reduced costs [4,3,0,5,5].

If we explore the neighborhood of X̄ at discrepancy d = 3 the sets Smin and Smax
are defined in the following way: Smin = {(2,2), (3,3)}, corresponding to X2 = 2 and
X3 = 3, Smax = {(1,4), (4,1), (5,5)}, corresponding to X1 = 4, X4 = 1 and X5 = 5.
We take into account the four possible situations depicted above:

(1) X1 = 4: X1 was supposed to change but it is instead assigned the value in X̄.
We (a) remove (1,4) from Smax; (b) remove (2,2) = arg max(m,n)∈Smin

c̄mn from
Smin and add it ordered in Smax; (c) LB2 = LB2 + 4 − 3.
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(2) X1 = 1: X1 was supposed to change and indeed changes. We update LB2: LB2 =
LB2 + 3.

(3) X2 = 3. No changes are necessary because a variable in Smin remains the same.
(4) X2 = 4: X2 had to remain the same but instead changes. We (a) remove (1,4) =

arg min(m,n)∈Smax
c̄mn from Smax and insert it in the last position of Smin; (b) re-

move (2,4) from Smin; (c) LB2 = LB2 − 3 + 4.

6.1.2 Removal of j from D(Xi)

The only important case is when (i, j) ∈ Smin, where a variable that was supposed
to remain the same w.r.t. X̄ and that contributed to the computation of the bound
changes. We assume Xi changes to a value corresponding to the smallest reduced
cost (possibly 0) whose index is k, and then update Smin and Smax as well as LB2. We
(a) remove (h, k) = arg min(m,n)∈Smax

c̄mn from Smax and insert it in the last position
of Smin; (b) remove (i, j) from Smin; (c) LB2 = LB2 + c̄hk − c̄ij . That is, the number
of variables which must change is decreased from d to d − 1.

Again on the example of Sect. 5, we consider the removal of value 2 from the
domain of X2. We (a) remove (1,4) = arg min(m,n)∈Smax

c̄mn from Smax and insert it
in the last position of Smin; (b) remove (2,2) from Smin; (c) LB2 = LB2 + 4 − 3.

7 Diversification strategy

When a neighborhood is proved to contain no improving solution or a time limit is
reached without any improving solution is found, one possible action to take is to stop
local branching with the result of having a tree search-based hill climbing behavior
which gets stuck at a local minimum. Another possibility is to escape from local
minima, find a new (improving) solution and restart local branching thereafter. We
can do so by inheriting from metaheuristics some successful diversification strategies,
such as enlarging the neighborhood. This was done in Fischetti and Lodi (2003) by
changing k to k/2 up to 3/2k. In this case, one either finds an improving solution
in the new neighborhood or applies another local minimum escape strategy, such as
removing the upper bounding constraint and accepting non-improving solutions.

Another way to escape from local minima is to simply reverse the last local
branching constraint (or imposing a no-good if the local branching constraint cannot
be reversed, as it happens when a neighborhood has not been explored in a complete
manner) and switching to the exploration of node 7 (Fig. 1) using pure CP. This strat-
egy is not particularly efficient as the search space rooted at node 7 is extremely large.
A variant of this strategy is to keep all the branching constraints Δ(X, X̄1) ≥ k + 1,
Δ(X, X̄2) ≥ k + 1 and Δ(X, X̄3) ≥ k + 1 at node 7 and then find a new feasible
solution X̄′

1 which is enforced to be better than X̄3.
Finally, a different and effective diversification technique that we propose in this

paper is to force the search towards regions of the search space that are arbitrarily
far from the set of solutions found so far. This diversification technique is commonly
used in metaheuristic methods, such as Rothberg (2007). Our original contribution
consists in using it within a tree search strategy to exploit CP propagation mecha-
nisms. Our experimental results show that such an aggressive diversification scheme
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Algorithm 1 Diversification Algorithm

for all solutions X̄j do
for all variables i do

Li = Li ∪ {X̄ji
}

end for
end for
populate Xchange with p% of the n variables in X

for all Xk ∈ Xchange do
for all j ∈ Lk do

Xk 	= j

end for
end for

tailored for CP is the most successful compared to the others described above when
local branching in CP is stuck in a local minimum. Algorithm 1 briefly shows how
our diversification technique works.

To implement this technique in CP, we benefit from the constraint of difference
that simply removes, from the domain of the variables, the values that we do not
want to assign any more. In particular, we collect all the solutions found so far in
n sets: L1, . . . ,Ln where Li is the set of values assigned to the variable Xi in the
solutions found so far. We fix a percentage p of variables whose assignments we
want to change and we select such variables heuristically. We therefore define a list
of p% variables Xchange and we impose constraints of difference on all of them.
In particular, for each variable Xk in Xchange, we impose Xk 	= j for each j ∈ Lk .
Depending on the percentage p, we can move arbitrarily far from the current set of
solutions. Potentially, p could also be 100%.

As an example, if we have obtained the following solutions [1,2,3,4,5],
[1,2,3,5,6], [1,2,4,6,5], sets are L1 = {1}, L2 = {2}, L3 = {3,4}, L4 = {4,5,6},
L5 = {5,6}. If the percentage p chosen is the 40% we have to change two variables.
Suppose that we select X2 and X5. Then, we impose X2 	= 2, X5 	= 5 and X5 	= 6.
The local branching performs a CP-based exploration of the search space, defined by
including these constraints of difference. In case no feasible solution is found with
such constraints, we choose other variables and perform a new search. We repeat this
step until either we find a solution or the time limit is reached.

8 Experimental set-up

In this section, we describe the experimental setting we used to evaluate local branch-
ing in CP.

8.1 Traveling salesman problem with time windows

Given a set of cities and a cost associated to traveling from one city to another, the
Traveling Salesman Problem (TSP) is to find a (unique) tour such that each city is
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visited exactly once and the total cost of traveling is minimized. In Asymmetric TSP
(ATSP), the cost from city i to city j may not be the same as the cost from j to
i, in contrast with the classical (or symmetric) TSP. The TSP with Time Windows
(TSPTW) is a time-constrained variant of the TSP in which each city has an asso-
ciated visiting time and must be visited within a specific time window. TSPTW is
a difficult problem which has applications in routing and scheduling. It is therefore
extensively studied in Operations Research and CP (see, e.g., Desrosiers et al. 1995;
Focacci et al. 2002b). In the following, we concentrate on the asymmetric TSPTW
(ATSPTW).

The difficulty of ATSPTW stems on the fact that it involves both optimality and
feasibility. ATSP calls for finding a minimum-cost Hamiltonian tour in a graph, which
is of course strongly NP-hard. Moreover, scheduling with release and due dates are
difficult satisfiability problems.

On the one side, scheduling problems are one of the most established application
areas of CP (see, e.g., Baptiste et al. 2001). On the other hand, the use of local search
techniques greatly enhances the ability of CP to tackle optimization problems (see,
e.g., Milano 2003 for a survey). For this reason the ATSPTW is a good choice for
testing the benefits of local branching in CP. Note that we do not aim at competing
with the advanced techniques developed specifically to solve this problem. We will
show that local branching in CP significantly helps in quickly finding good solutions
for the ATSPTW, i.e., more generally for problems with difficult feasibility and opti-
mization aspects together.

8.2 Local branching on ATSPTW

To solve ATSPTW using local branching in CP, we have adopted the model of Focacci
et al. (2002b) in which each Nexti variable indicates the city visited after city i. Each
city i is associated with an activity and the variable Starti indicates the time at which
the service of activity i begins. Apart from the other constraints, the model consists
of the alldifferent(X) constraint (posted on the Next variables) and the cost function
C, therefore it can be propagated using the cost-based filtering algorithm described in
Focacci et al. (2002a). Due to the existence of the local branching constraints (again
posted on the Next variables) in addition to alldifferent(X) and C, we can use the
Assignment Problem as relaxation Rel and apply the cost-based filtering described in
Sect. 5.

We test different variants of local branching in CP, each tuned for our experiments
as we will describe later. We compare the results with a pure CP-based search using
the same model except that additive bounding does not exist and thus alldifferent(X)
is propagated only by the cost-based filtering algorithm in Focacci et al. (2002a).
The CP model is solved with depth-first search enhanced with constraint propagation
using the primitives available in Solver and Scheduler. We improve CP search effi-
ciency by using a cost-based scheduling heuristic. At each node of the search tree,
the activity in the domain of Nexti with the smallest reduced-cost value c̄ij is chosen
and assigned. In case of ties, the activity associated with the earliest start time and
the latest end time is considered first. In the remainder of this section, we refer to
this heuristic as H1, the method using local branching in CP as LBr, and the pure
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CP-based search as CP. To allow a fair comparison, heuristic H1 is used in both CP
and LBr.

The generic local branching framework is employed in the experiments as fol-
lows. An initial feasible solution Next1 is found using CP with heuristic H1. At each
iteration i the neighborhood of the incumbent solution Nexti is explored within a
time-limited search sub-tree; each sub-tree is searched for increasing values of k with
a heuristic exploiting the knowledge about the costs. While searching a sub-tree, we
are exploring a limited discrepancy space, assigning some variables their values in
the incumbent solution Nexti (fixing process) and changing the others. When choos-
ing the variables to fix, at the i-th iteration, we take the incumbent solution Nexti
and calculate δj for each variable Nextj , which is the minimum increase in the cost
function by changing it from Nextij to a value in D(Nextj) \ {Nextij }. We then choose
the variables with the highest δ, we fix them to the old value and change the others.

As discussed in the previous sections, the local branching algorithm allows a cer-
tain degree of flexibility, especially in terms of the definition and exploration of the
neighborhoods. There are three main parameters that we can set. First of all, the dis-
crepancy k at which neighborhoods are explored. Then, the time limits, both local,
i.e., the time limit over neighborhood exploration and diversification, and global. Fi-
nally, the diversification step contains extra parameters to set, i.e., how to choose
variables to set constraints of difference on and which percentage of variables to
choose.

We performed preliminary testing on the time limits to be adopted, so we report
here numbers only for the settings that we found most successful. We will discuss in
detail the choice of the other parameters in the following sections.

9 Experimental results

In this section we report experimental results from testing CP-based local branching
on ATSPTW. We evaluate both the performance of its components and its overall
performance, which is compared against pure CP search. Experiments are conducted
using ILOG Solver 6.3 and ILOG Scheduler 6.3 on a 2 GHz Pentium IV running
Linux with 1 GB RAM.

9.1 Evaluation of CP-based local branching

The first set of experiments aimed at using the local branching approach in the eas-
iest possible way. As we wanted to create sub-trees big enough to improve solution
quality but small enough to be explored fast, we tested k equal either to 3 or to 5.
A preliminary investigation showed that setting k = 5 defined neighborhoods which
were computationally far more expensive to explore than setting k = 3, overcom-
ing the benefit of searching a broader space. Consequently, the configuration k = 3
was chosen. Table 1 compares our first version of LBr with standard CP on a set of
classical ATSPTW instances proposed by Ascheuer (1995).

The basic version of LBr whose results are reported in Table 1 explores each neigh-
borhood stopping at the first solution with no time limit on the neighborhood, per-
forming no diversification. We call this configuration LBr1. Hence, when a neighbor-
hood is proven to contain no improving solution, the last local branching constraint is
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Table 1 Small instances, less than 50 cities, 600 CPU seconds time limit

Instance Best value Standard CP LBr1

Time Time best Value Time Time best Value

rbg010a 149 0.03 0.01 149 0.03 0.02 149

rbg016a 179 0.20 0.08 179 0.15 0.13 179

rbg016b 142 2.63 1.67 142 1.06 0.70 142

rbg017.2 107 3.97 3.87 107 0.82 0.65 107

rbg017a 146 0.26 0.20 146 0.25 0.22 146

rbg017 148 1.14 0.85 148 0.64 0.42 148

rbg019a 217 0.25 0.20 217 0.25 0.23 217

rbg019b 182 2.59 0.24 182 1.53 1.37 182

rbg019c 190 1.00 0.82 190 0.93 0.59 190

rbg019d 344 600.00 0.05 344 0.44 0.10 344

rbg020a 210 0.25 0.11 210 0.59 0.52 210

rbg021.2 182 0.46 0.41 182 1.87 1.83 182

rbg021.3 182 5.14 4.52 182 3.72 3.50 182

rbg021.4 179 1.24 0.94 179 0.96 0.88 179

rbg021.5 169 1.65 1.34 169 2.92 2.32 169

rbg021.6 134 10.42 10.31 134 9.17 8.93 134

rbg021.7 133 120.73 120.49 133 2.82 2.58 133

rbg021.8 132 6.07 5.88 132 4.65 4.21 132

rbg021.9 132 9.68 9.31 132 5.18 4.42 132

rbg021 190 0.97 0.80 190 0.93 0.60 190

rbg027a 268 4.92 4.12 268 10.04 7.57 268

rbg031a 328 600.00 515.74 371 600.00 18.07 337

rbg033a 433 600.00 467.74 517 42.18 41.95 433

rbg034a 403 600.00 470.39 479 600.00 33.06 407

rbg035a.2 166 465.05 362.89 166 348.46 207.49 166

rbg035a 254 26.96 24.39 254 51.43 37.25 254

rbg038a 466 600.00 8.87 556 600.00 40.21 466

rbg040a 386 600.00 484.97 461 600.00 89.7 415

rbg041a 402 600.00 471.12 615 600.00 166.97 445

rbg042a 411 – – – – – –

rbg048a 487 600.00 244.21 658 600.00 519.35 553

rbg049a 484 600.00 226.16 577 600.00 434.31 567

reversed and pure CP is applied. The aim of this experiment was to test on small (and
relatively easy instances) the capability of LBr to compete with standard CP in terms
of exact solution within a small global time limit. Table 1 reports for each instance,
its name (Instance), the best known solution value (Best value) taken from Baldacci
et al. (2010), the computing time (Time), the time to find the best solution (Time best)
and the best solution value (Value) for both CP and LBr. For the instances in which
the time limit of 600 CPU seconds is reached the solution value is most probably
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not optimal (or at least is not proven to be optimal). The results show that basic LBr
tends to be faster than standard CP both in terms of finding the best solution and of
proving optimality. Two more instances are solved to optimality by LBr w.r.t. CP,
namely rbg019d and rbg033a.

Few more details and comments are required.

• For instance rbg042a CP does not find any feasible solution within the time
limit, thus LBr is not even started because it relies (in these test configurations) on
CP for finding such a first solution.

• As mentioned, LBr1 explores the neighborhood with no time limit but it stops as
soon as a feasible improving solution is found. We, of course, tested the version
in which the neighborhood exploration is exhaustive and the results are very simi-
lar for these instances while they are worse for larger ones (to be discussed later)
and we preferred to keep one version only. Even by stopping at the first improving
solution the algorithm remains exact; this is due to the fact that we do not reverse
the local branching constraint as we would do when performing exhaustive neigh-
borhood exploration. We instead remove the local branching constraint and add a
no-good (see Sect. 4).

• The size of the neighborhood we considered is relatively small: the size of a clas-
sical 3-opt move in the Lin and Kernighan (1973) heuristic. In order to understand
whether such a neighborhood could be explored more efficiently by a simple enu-
merative strategy as in classical local search methods we implemented and tested 3-
opt. Results showed that such a version, lacking propagation, performs very poorly,
much worse than standard CP.

• Another natural question concerns the use of Limited Discrepancy Search. We
tested LDS by enhancing it with the bound improvement described in Sect. 5 and
by using the same propagation we use for LBr but the results were disappointing.
Note that in such a way we highlight the difference between LDS and LBr because
the two algorithms are similar with the very relevant difference that the reference
solution is (potentially) updated at each iteration in LBr while it is not in LDS. This
is a strong point, in particular for those problems in which the reference (initial)
solution can be poor which is definitely the case of the ATSPTW. This issue will
be discussed again later.

Table 2 reports the results of the LBr1 configuration on larger instances with up
to 233 cities. The table introduces a new column, labeled Disc, that indicates the dis-
crepancy separating the initial solution, which is the same for both CP and LBr, from
the final solution, which depends on the configuration under examination. None of
the considered approaches exhaustively explores the search space by increasing val-
ues of discrepancy, so it may happen that a configuration is able to find a solution of
better quality having smaller discrepancy from the initial solution than the competing
configuration. Both algorithms were tested with a longer time limit, namely 7,200
CPU seconds.

The interpretation of the results given for small instances in Table 1 is very similar
here besides that, even allowing 2 hours of computing time, neither CP nor LBr are
able to solve to optimality any of the large instances. However, LBr largely improves
over CP on 14 of the 18 problems in terms of the best solution found. For these
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Table 2 Big instances, 7,200 CPU seconds time limit

Instance Best value Standard CP LBr1

Time Disc Time best Value Time Disc Time best Value

rbg050a 414 7,200 22 5,172.28 648 7,200 45 440.29 430

rbg050b 512 7,200 35 6,860.40 628 7,200 41 1,017.50 570

rbg050c 526 7,200 31 5,071.65 605 7,200 40 843.85 563

rbg055a 814 7,200 25 589.94 879 7,200 30 54.57 814

rbg067a 1048 7,200 26 3,732.71 1227 7,200 38 149.03 1056

rbg086a 1051 – – – – – – – –

rbg092a 1093 7,200 30 68.71 1537 7,200 67 6,882.03 1159

rbg125a 1409 7,200 39 3,478.96 1991 7,200 76 7,197.21 1697

rbg132.2 1083 7,200 45 6,444.43 1980 7,200 61 7,169.71 2014

rbg132 1360 7,200 42 6,260.76 1933 7,200 60 7,200.00 1772

rbg152.3 1539 7,200 24 2,195.42 2652 7,200 57 7,037.57 2459

rbg152 1783 7,200 50 2,884.81 2532 7,200 69 6,739.56 2329

rbg172a 1799 7,200 51 5,666.87 2838 7,200 28 6,749.19 2930

rbg193.2 2017 7,200 35 333.49 3300 7,200 36 7,140.97 3200

rbg193 2414 7,200 37 3,415.06 3346 7,200 33 6,658.50 3294

rbg201a 2189 7,200 39 6,265.24 3585 7,200 26 7,200.00 3694

rbg233.2 2188 7,200 49 491.43 3909 7,200 32 6,381.93 4059

rbg233 2689 – – – – – – – –

instances, the two algorithms never obtain the same solution value, thus the “Time
best” column is not comparable. However, one can note that for LBr “Time best” is
generally close to the time limit which indicates that LBr is still improving near the
end of the available computing time. This is not the case for CP which seems to get
often stuck in a local minimum early in the computation. In addition, one can note that
on the 4 instances in which LBr is worse than CP, namely rbg132.2, rbg172a,
rbg233.2 and rbg233, the solution found by CP has a much higher discrepancy
w.r.t. the one of LBr. This is a known issue of local branching approaches: if the
initial solution is very poor the algorithm continuously improves it but can be slow to
converge to a decent value because it explores small neighborhoods of poor solutions
while the good ones might be quite far. In order to overcome such a difficulty, we
tested the variant of the LBr1 scheme described in Sect. 7 in which the search is
carefully diversified. The results of this version, denoted as LBr2, are reported in
Table 3 where they are compared with standard CP and LBr1 on instances with at
least 100 cities.

More precisely, in the LBr2 version we explore each neighborhood with a time
limit of 180 CPU seconds or until the first improving solution is found. In case within
the time limit no improving solution has been found, we tune our simple diversifica-
tion technique by choosing 10% variables in a random way and impose constraints of
difference on them w.r.t. their previous values. Such a new neighborhood is then ex-
plored with a time limit of 300 CPU seconds and, eventually, the process is iterated if
no improving solution is obtained within such a time limit. The table reports, together
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Table 3 Big instances with diversification, 7,200 CPU seconds time limit

Instance Best value Standard CP LBr1 LBr2

Disc Value Disc Value Disc #Div Div time Value

rbg125a 1409 39 1991 76 1697 71 1 1,771.21 1762

rbg132.2 1083 45 1980 61 2014 112 4 2,104.09 1883

rbg132 1360 42 1933 60 1772 36 1 5,393.15 1934

rbg152.3 1539 24 2652 57 2459 109 3 3,889.46 2397

rbg152 1783 50 2532 69 2329 120 1 1,719.33 2281

rbg172a 1799 51 2838 28 2930 129 3 2,948.26 2748

rbg193.2 2017 35 3300 36 3200 174 5 3,950.77 3143

rbg193 2414 37 3346 33 3294 161 5 4,271.16 3217

rbg201a 2189 39 3585 26 3694 179 6 3,390.61 3562

rbg233.2 2188 49 3909 32 4059 207 4 3,263.06 3886

with a selection of the usual information, the number of diversifications (#Div) and
the computing time spent in diversification (Div time) for the LBr2 version.

The results in Table 3 are quite encouraging: the unsatisfactory behavior of LBr1
on the above mentioned four instances is largely improved with only slight deteriora-
tion on a couple of problems, namely rbg125a and rbg132. In particular, instance
rbg132 shows that the tuning of a diversification strategy is always a bit delicate:
almost 5,400 CPU seconds are spent in a unique diversification phase with no effect.
Despite this unlucky behavior, the value of the best solution found (1934) is only one
unit worse than the one of CP, thus demonstrating that the overall behavior of the
LBr2 version is very effective and sufficiently stable.

Note that we have as well experimented with other tunings of our diversification
strategy. We have explored changing the parameter p by setting it to 10, 20, 40 and 60.
In addition, we have tried different heuristics to decide which p% of variables to
choose by taking into account the way they have changed their values in the solutions
found so far. In particular, we have selected the variables which changed their values
either the most or the least in the current set of solutions. Unfortunately, none of
the combinations of these tunings gave competitive results compared to the random
selection of 10% variables.

9.2 Bounding evaluation

In this section we report results from tests aimed at evaluating the computational role
of bounds in terms of pruning capabilities and computational speed up.

9.2.1 Impact of additive bounding and cost-based filtering

To test the impact of additive bounding and cost-based filtering on CP-based local
branching, we defined two variants of the basic CP-based local branching configura-
tion LBr1, namely LBr3 and LBr4. In particular, LBr3 behaves exactly like LBr1, it
computes the additive bound, as explained in Sect. 5, but it does not use such a bound
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Table 4 Neighborhood
exploration: LBr1 against LBr3

Average Minimum Maximum

Time 0.78 0.29 0.99

Fails 0.84 0.23 1.00

Table 5 Neighborhood
exploration: LBr1 against LBr4

Average Minimum Maximum

Time 0.76 0.14 1.06

Fails 0.79 0.14 1.00

for the additional propagation described in Sect. 6. Instead, LBr4 does not compute
the additive bound at all, i.e., it does not use the results in Sects. 5 and 6.

We wanted to evaluate the impact of additive bounding and cost-based filtering
over single neighborhood explorations of large ATSPTW instances. We chose the
largest ATSPTW instances from Ascheuer (1995), i.e., instances having more than
50 nodes, and we compared the neighborhood exploration components from LBr1,
LBr3 and LBr4 on the partial exploration of a given solution neighborhood. For each
instance the same initial solution was given to all configurations; the neighborhood
exploration was stopped when a given feasible improving solution was found, the
same for all configurations. This is obtained through the use of a simple static heuris-
tic, i.e., a heuristic with both fixed variable and value ordering, to guide the search.
More precisely, the ordering is that of the variable array in the model, and the smallest
domain value of the chosen variable is selected.

We compared the time used from each configuration to perform the neighborhood
exploration and the number of fails needed. For each instance a time ratio is com-
puted as time needed from LBr1 over time needed from the competing configuration,
and similarly it is done for the number of fails. Tables 4 and 5 report the comparison
between LBr1 and LBr3 and between LBr1 and LBr4, respectively, reporting the aver-
age, minimum and maximum of the time and fails ratio values over all the instances.

The results in Tables 4 and 5 clearly show how the adoption of both additive
bounding and cost-based filtering brings a substantial gain to the single neighbor-
hood exploration.

In order to confirm this observation in the real setting, we finally considered the
37 instances with up to 100 nodes (but rbg042a and rbg086a on which no initial
solution is found, see Tables 1 and 2) and we ran the three versions LBr1, LBr3 and
LBr4 with the usual heuristic H1 with a time limit of 600 CPU seconds. Clearly,
because H1 uses the bound information (see, Sect. 8.2) the evolution of the three
versions of the code are generally completely different and the faster neighborhood
exploration shown by Tables 4 and 5 above might, in principle, not correspond to
better performance for LBr1. However, version LBr1 is clearly the best one:

– all versions could solve the 24 instances solved by LBr1 (see, Table 1) in compa-
rable computing times, LBr1 being nevertheless the fastest;

– on the remaining 13 instances reaching the time limit, LBr1 stops with a solution at
least as good as that of LBr3 and LBr4 in all but 1 case and of strictly better quality
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on 4 and 5 cases, respectively. When the solutions are identical LBr1 is always
faster.

9.2.2 Impact of incremental bound computation

A final note concerns the impact of the incremental bound recomputation. Needless
to say, the incremental recomputation of the AP in O(n2) time is crucial to obtain
competitive results. Concerning the incremental recomputation of the bound based
on the local branching constraint, we extensively tested its impact in exploring the
neighborhood of a given solution (with the same computational setting described in
the previous section) w.r.t. a version that recomputes the additive bound from scratch
when needed, i.e., building the Smin and Smax sets on the fly. The two versions are
identical in terms of pruning capabilities (i.e., fails), while the incremental one is
slightly (but consistently) faster, with up to a 5% time improvement in a single neigh-
borhood exploration.

10 Related work

Integration of local search and CP aided tree search so as to tackle difficult constraint
problems has been long advocated in the literature. See for instance (Shaw 2011)
for a more recent survey which aggroups the proposed approaches. One group uses
the modelings aspects of CP in combination with local search methods for finding
solutions. The min-conflicts algorithm (Minton et al. 1992) and the Comet language
(van Hentenryck and Michel 2005) are two examples of this approach. Another group
employs local search to strengthen the pruning and propagation power CP. This is
done for instance in Sellman and Harvey (2002) in the context of solving the social
golfer’s problem.

The group of integrations that are most related to our work use CP to evalu-
ate the neighborhoods of a local search method. Specifically, Pesant and Gendreau
(1999) proposed a framework for local search in which a new neighborhood con-
straint model is coupled with the original model of the problem. This new model
represents the neighborhood of the current solution and is searched using CP aided
tree search. This is exactly what our framework does though the way its constructs
and searches the neighborhoods significantly differs from that proposed in Pesant and
Gendreau (1999). Other related approaches are search methods like large neighbor-
hood search (Shaw 1998) which iteratively relaxes a part of the current solution and
then re-optimizes that part using for instance CP aided tree search. As introduced in
Fischetti and Lodi (2003), local branching is a complete tree-search method designed
for providing solutions of better and better quality in the early stages of search by
systematically defining and exploring large neighborhoods. Although complete, the
idea has been used mainly in an incomplete manner since Fischetti and Lodi (2003):
the constraints defining large neighborhoods are iteratively added and the neighbor-
hoods are explored, generally in a non-exhaustive way. When this is done within a
local search method, the overall algorithm follows the spirit of both large neighbor-
hood search and variable neighborhood search (Mladenovic and Hansen 1997). The
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main peculiarity of local branching is that the neighborhoods and their exploration
are general purpose.

Various other integrations have been proposed. Among them, Beck’s
solution-guided multi-point constructive search (Beck 2007) shows similarities to
our framework as it makes use of the existing feasible solutions to guide search for
optimal solution. The search algorithm initializes a set of elite solutions and enters
in a while loop. In each iteration, with probability p, search is started from an empty
solution or from a randomly selected elite solution r and continues until a fail limit.
In the first case, if the best solution found s is better than the worst elite solution w,
s replaces w. In the second case, r is used as a value selection heuristic and is re-
placed by s if s is a better solution. Local branching is fundamentally different from
the solution-guided multi-point constructive search as it searches the neighborhood
of the best known solution in a discrepancy-based fashion and applies diversification
strategies in case stuck in local minima.

Related work also includes relaxations in propagation (Sellmann and Fahle 2003)
and the use of Hamming distance to find similar and diverse solutions in CP (Hebrard
et al. 2005). The local branching framework constitutes of many basic components
that the list of related work is by no means complete.

11 Conclusions

We have shown that CP-based local branching raises a variety of issues which do
not concern only the implementation. Even if the neighborhoods are not defined by
linear inequalities and not explored by MIP techniques, both the definition and the
exploration are as general as in the MIP context. The bound is applicable to any
problem, as long as we can recognize in the problem a combinatorial relaxation which
can be solved in polynomial time and provide a bound and a set of reduced-costs.

One could as well use a k-discrepancy constraint (Lodi et al. 2003) to define the
neighborhood and a discrepancy-based technique (in the spirit of LDS (Harvey and
Ginsberg 1995)) for its effective exploration. In this way, both the modeling and the
search of neighborhoods would benefit from the important features of CP, as done in
the MIP counterpart. CP-based local branching, however, benefits from diverse areas:
power of propagation and effective heuristics of CP, cost-based filtering and addi-
tive bounding borrowed from MIP (for proving optimality), and intensification and
diversification borrowed from local search (for finding good solutions earlier). Our
experiments on the time-constrained variant of the classical ATSP show the benefits
of local branching in CP. Although we believe the ATSPTW is a good representative
problem to assert the effectiveness of the proposed approach in CP, clearly additional
tests are needed to draw more complete conclusions. In particular, different problem
classes and other search strategies should be taken into account.

Further work goes in the direction of developing an automatic tuning process of
the CP-based local branching parameters; recent work (Hutter et al. 2010) shows that
this is an important field to explore. Moreover, other research directions include the
computation of a stronger and more sophisticated lower bound taking into account
more than one reference solution and the analysis of problems involving different
relaxations.
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