
1

MACHINE LEARNING

• Definition 1:
– Learning is constructing or modifying

representations of what is being experienced
[Michalski 1986], p. 10

• Definition 2:
– Learning denotes changes in the system That are

adaptive in the sense That they enable the system
to do the same task or tasks drawn from the same
population blackberries efficiently and more
effectively the next time [Simon 1984], p. 28

2

USES OF ML

• A) knowledge extraction
– to be used for the operation of knowledge-based

systems (for example, for classification systems)
– for scientific purposes, for the discovery of new

facts and theories through observation and
experimentation

• B) improving the performance of a machine
– for example, improving the motion and cognitive

abilities of a robot
– for game playing

3

ML techniques

• symbolic techniques
– different types of representation

– value attribute representation
– representation of the first order

• Statistical techniques

• Neural networks

4

INDUCTIVE LEARNING

• Inductive learning: the system starts from
observations coming from a trainer or from the
surrounding environment and generalizes, gaining
knowledge that, hopefully, is also valid for not yet
observed cases (induction).

• Two types of inductive learning:
– Learning from examples: the knowledge is gained from a

set of positive examples that are instances of the concept to
be learnt and negative examples which are non-instances of
the concept

– Learning regularity: there is not a specific concept to be
learned, the goal is to find regularities (i,e. common features,
patterns) in data

5

LEARNING FROM EXAMPLES
MAIN CONCEPTS

– Universe U: set of all domain objects
– Concept C: subset of objects in the domain C⊆U
– A description language for objects Lo
– A description language for concepts Lc
– A procedure that interprets both languages and

checks whether the description Dc of the concept
C is satisfied by the description Dx of an object x
(Dc covers Dx).

6

– Informally:
• Learning a concept C means finding a

description of C that allows to tell if an object
x ∈ U is an instance of C, i,e. if x ∈ C.

LEARNING FROM EXAMPLES
MAIN CONCEPTS

7

• Fact: description of an object
• Example of a concept C: labeled fact. The label is +

if the object is an instance of C, while the label is - if
the object is not an instance of C.

• Training set: set E of examples (labeled facts). E is
composed by all the positive examples E + and all
the negative examples E-

LEARNING FROM EXAMPLES
MAIN CONCEPTS

8

• Hypothesis: we have a description of the concept to
be learned

• If an fact satisfies the hypothesis we say that the
hypothesis covers the fact.

• Function for the test coverage:
covers (H, e)

returns true if e covered by H and false otherwise
• Extension to sets of examples:

covers (H, E) = {e ∈E | covers (H, e) = true}

LEARNING FROM EXAMPLES
MAIN CONCEPTS

9

LEARNING PROBLEM DEFINITION
• Given a set E of positive and negative examples of a

concept C, expressed in an object description
language Lo,

• Find a hypothesis H, expressed in a given concept
description language Lc, such that:
– every positive example e+ ∈ E is covered by H
– no negative example e- ∈ E- is covered by H

LEARNING FROM EXAMPLES
MAIN CONCEPTS

10

COMPLETENESS and CONSISTENCY

• A hypothesis H is complete if it covers all positive
examples

covers(H, E+) = E +

• A hypothesis H is consistent if does not cover any
negative example

covers(H, E-) =∅

12

KNOWLEDGE REPRESENTATION

• Languages ​​used for the representation of examples
and concepts:
– attribute-value languages
– relational languages
– first order languages

• The richer the language, the more complex the
learning problem

13

ATTRIBUTE-VALUE LANGUAGES

OBJECT DESCRIPTION LANGUAGE
• Fixed number of attributes for each instance
• Each instance is described by values ​​assumed by the

set of attributes.
• Attributes can be:

– Boolean or binary
– nominal
– ordinal
– Numeric

• if k are the attributes, each instance can be
represented as a point in a k-dimensional space

14

EXAMPLE

• Universe of athletes
• Instances described by attributes

– height, weight, body-type

• Example instance
height = 1.85m, weight = 110kg, body-type = robust

18

ATTRIBUTE VALUE LANGUAGES

• Equivalent to propositional logic:
– any equality or inequality can be seen as a

proposition (no variables and no terms)
– there are no variables, quantifiers and predicates

with arity > 1

15

PRODUCTION RULES

CONCEPT DESCRIPTION LANGUAGE
• Production rules

– Antecedent: conjunctions and disjunctions of equalities
or inequalities between an attribute and a value,

– Consequent: the concept (class)
• Example:
• Concept: soccer player
• Example description of the concept

weight> 100 and (bosy-type= normal or body type =
robust) → soccer_player

16

DECISION TREES

CONCEPT DESCRIPTION LANGUAGE
• Decision trees

– each node corresponds to a test on an attribute
(equality, inequality) and each branch that starts
from the node is labeled with the test result

– each leaf corresponds to a class (concept)

• Fully equivalent to production rules

17

DECISION TREE (example)

Weight > 100

body_type No

yes

volleyball_playerSoccer_player Golfer

thinnormal

Soccer_player

robust

19

RELATIONAL LANGUAGES

OBJECT DESCRIPTION LANGUAGE
• Attribute-value languages​are not suited to represent

instances composed of subparts.
• Example: jones family, components:

– name: dave, son: mike, father: ron
– name: mike, son: junior, father: dave
– name: junior, father: mike

• The description of the family could be transformed
into a list of attribute value pairs providing a number
of attributes equal to the product of the maximum
number of components for the maximum number of
attributes per component: waste of memory

20

RELATIONAL LANGUAGES

OBJECT AND CONCEPT DESCRIPTION LANGUAGE
• The attribute-value languages ​​are therefore

inefficient to represent these universes. Relational
languages ​​are used instead (see example above).

• These languages ​​allow descriptions of concepts that
may contain variables and quantifiers (non-
propositional languages).

• Description of the family concept with a grandparent
∀x, y, z (son(x) = y and son (y) = z)

21

FIRST ORDER LANGUAGES

OBJECT DESCRIPTION LANGUAGE
• First-order logic languages.

– Very rich
– Objects are described as ground facts
– Each attribute of a component becomes a

predicate.
– We can express also relations between

components of the same object

22

Example: world block

a

b

Instance in attribute-value form: components:
• name: a, shape = square, size = large, on-table = yes
• name: b, shape = triangle, size = small, on-table = no
Instance in first-order logic:
• object (s, a), object (s, b),
• square (a), triangle (b), large(a), small(b), on-table (a)

• on (b, a)

•Example of "object":

Relation between parts

23

FIRST ORDER LANGUAGES

CONCEPT DESCRIPTION LANGUAGE
• Concepts are described through logic clauses
• Compared to relational languages, they also allow:

– to define the concepts recursively

ancestor(X, Y):- father(X, Z), ancestor(Z, Y)

• They are a deeply studied and formal language. Use of
logic programming for the representation of objects and
concepts: inductive logic programming

24

LEARNING TECHNIQUES

• Learning from value attribute objects:
– Decision trees
– Production rules

• Learning from first order logic facts:
– Inductive Logic Programming

25

DECISION TREES LEARNING

• Systems that learn decision trees: CLS, IDR, C4,
ASSISTANT, ID5, C4.5 etc.

• Appropriate problems:
– instances are represented by attribute value pairs
– the target function has discrete values
– disjunctive descriptions of concepts may be

required
– the set of training data may contain errors
– the set of training data may contain missing data

26

C4.5 ALGORITHM

• c4.5 [Qui93b, Qui96], designed by Quinlan is an
algorithm for learning decision trees
– Ranked #1 in the Top 10 Algorithms in Data Mining pre-

eminent paper published by Springer LNCS 2008
• Evolution of ID3 by the same author
• Inspired by one of the first systems: CLS (Concept

Learning Systems) by E.B. Hunt
• J48 is an open source Java implementation

implementation of the C4.5 algorithm in the Weka
data mining tool.

27

TREE GENERATION ALGORITHM

• T: set of examples – Training set
• {C1, C2, ..., Ck}: Set of classes
• Consider the set T:

– If T contains one or more examples, all belonging to the
same class è single leaf labeled with the class

– T contains examples that belong to multiple classes è
partition T in subsets according to a test on an attribute. We
have a node associated with the test, with a sub-tree for
each possible test result. Recursively call the algorithm on
each node created by the partition.

– If T contains no example (empty set) è single leaf labeled
the class more' frequently in'both father

28

TERMINATION CONDITION

• In principle the algorithm stops when all leaves
contain homogeneous examples.

• Indeed, we have less tight termination conditions
– C4.5 does stops even if:

• No test exists such that at least two subsets
contain a minimum number of cases

• By default the number of cases is 2

29

EXAMPLE

• Instances: Saturday morning
• Concepts: Saturday suitable for playing tennis and

Saturday not suitable for playing tennis
• attributes:

– outlook with values ​​{sunny, overcast, rain}
– temperature with numerical values
– humidity with numerical values
– windy with values ​​{true, false}

30

TRAINING SET

No Outlook Temp (°F) Humid (%) Windy Class
D1 sunny 75 70 T P
D2 sunny 80 90 T N
D3 sunny 85 85 F N
D4 sunny 72 95 F N
D5 sunny 69 70 F P
D6 overcast 72 90 T P
D7 overcast 83 78 F P
D8 overcast 64 65 T P
D9 overcast 81 75 F P
D10 rain 71 80 T N
D11 rain 65 70 T N
D12 rain 75 80 F P
D13 rain 68 80 F P
D14 rain 70 96 F P

31

DECISION TREE

Outlook

rainsunny

Humidity ≤ 75

P

true

N

false

Windy

N

true

P

false

P

overcast

32

DECISION TREE

Outlook = sunny
| humidity≤ 75: P
| humidity> 75: N

Outlook = overcast: P
Outlook = Rain

| windy = True: N
| windy = False: P

33

ATTRIBUTE CHOICE

• How to choose the test (attribute) at every step?
• Generation of the smallest possible trees:

computationally intractable.
• It is then chosen based on a greedy heuristic (non-

backtrackable)
• The choice is designed to minimize the depth of the

final tree
– The perfect attribute divides examples into sets

that are all positive or all negative
– A useless attribute leaves the example set with

roughly the same proportion of positive and
negative examples as the original set

33

ATTRIBUTE CHOICE

• We need a formal measure of the attribute
“performance”:
– The measure should have its max with perfect

attributed and min with useless ones.
– Takes inspiration from information theory, namely

the amount of information provided by an attribute.
– The proportion of positive and negative example in

a set T is a good estimation of this:
• How much information we still need after

the attribute test (the lower the better)
• Based on the concept of Entropy

34

ENTROPY OF AN EXAMPLE SET

• Entropy of a set of examples: Given the set of
samples S and the class Cj

• Entropy of the training set
info (T)

It can also be seen as a measure of non-uniformity of
an arbitrary collection of examples: the lower the better

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−= ∑ = S

SCfreq
S

SCfreq
Sinfo jk

j
j),(

log
),(

)(21

35

EXAMPLE

• Case of only two classes, p+ and p- are the
proportion of positive and negative examples in the
training set (p- = 1-p+).

• The entropy is given by:

−−++ ×−×−= ppppTinfo 22 loglog)(

36

EXAMPLE

• The entropy is minimum when all the examples in T
belong to the same class:
– p+= 0 (or p+= 1) èinfo (T) = 0

• 0 * log2 0 = 0

• The entropy is maximum when half of the examples
belong to a class, and the other half to the other
class:
– p+= 0.5 è info (T) = 1

37

ENTROPY

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p+

En
tro
pi
a

34

GAIN OF AN ATTRIBUTE CHOICE

• The gain of an attribute X is given by the difference
between the original information and the one after the
partition on X

• Entropy after partitioning (according to the X test):
weighted average of the entropies of the individual
sub-units

)()(
1 i

n

j
i

X Tinfo
T
T

Tinfo ×−= ∑ =

• Information gain
gain (X) = info (T) - infoX(T)

38

TRAINING SET

No Outlook Temp (°F) Humid (%) Windy Class
D1 sunny 75 70 T P
D2 sunny 80 90 T N
D3 sunny 85 85 F N
D4 sunny 72 95 F N
D5 sunny 69 70 F P
D6 overcast 72 90 T P
D7 overcast 83 78 F P
D8 overcast 64 65 T P
D9 overcast 81 75 F P
D10 rain 71 80 T N
D11 rain 65 70 T N
D12 rain 75 80 F P
D13 rain 68 80 F P
D14 rain 70 96 F P

39

EXAMPLE

• Consider the problem of the decisio: P or N
• In the original training set T we have 14 examples:

– 9 positive
– 5 negative

• Entropy of T

• info (T) = - (9/14) log2(9/14) - (5/14) log2(5/14) = 0.940

−−++ ×−×−= ppppTinfo 22 loglog)(

42

EXAMPLE

• Test on the attribute wind:

info (TF) = - 6/8 * log2(6/8) -2/8 * log2(2/8) = 0.811
info (TT) = - 3/6 * log2(3/6) -3/6 * log2(3/6) = 1
infowind(T)= 8/14 * info (TF)+6/14 * info (TT)

gain(wind) = info (T) - infowind(T)=
= 0.940- (8/14) * 0.811- (6/14) * 1 = 0,048

9P – 5N
Windy?

T

3P –3N 6P – 2N

TRUE FALSE

TT TF

Should be
weigthed
summed

43

EXAMPLE

• Test on the attribute outlook

info (Tsunny) = - 2/5 * log2(2/5) -3/5 * log2(3/5) = 0.971
info (Tovercast) = 0
info(Train) = - 2/5 * log2(2/5) -3/5 * log2(3/5) = 0.971
infooutlook (T) = 5/14 * info(Tsunny)+ 4/14 * info(Tovercast)+ 5/14 * info(Train)
gain (outlook) = info(T) – infooutlook (T) = 0.940-(0.357* 0.971+ 0.286 * 0 +

0357*0971)= 0.246

9P – 5N
Outlook?

T

2P –3N 3P – 2N

SUNNY RAIN

Tsunny Train

4P – 0N

Tovercast

OVERCAST

44

TEST GENERATION

• Problem: generation of the set of possible tests.
• A priori definition of the allowed forms
• Three possible types of tests

– Discrete attribute: a result for each value.
– Discrete attribute: a result for each group of

values.
– Continuous attribute: two possible outcomes

(binary test).
• Additional constraint: at least two of T1,T2, ..., Tn must

contain a minimum number of examples.

45

TESTS ON DISCRETE ATTRIBUTES

When testing on discrete attributes, we can have:

• A result for each value found in the training set

• A result for each group of values: we must determine
how many and which groups to consider.
– Domain knowledge: a priori identify significant

groups (new values).
– Testing of all possible partitions of the set of

values.

46

TEST ON CONTINUOUS ATTRIBUTES

• A continuous attribute A takes m distinct values ​​in T
{V1, V2...., Vm} ordered from the smallest to the
largest

• Select as threshold Z = Vk that splits the m
values ​​into two groups:
– A ≤ Z {V1, ..., Vk}
– A > Z {Vi + 1, ..., Vm}

• We have m-1 candidates: V1, ..., Vm-1

• Evaluation of each of the m-1 candidates in terms of
entropy.

47

ATTRIBUTES WITH MISSING VALUES

• In many domains not all attribute values are known
for every example. How to compute the gain?

• Gain: we call F⊆T the subset of T for which A is
known and X is a test on A

info(T) = info(F)
infoX(T) = infoX(F)

• The test of A for examples in T \ F does not provide
any information on the class.

Gain (X) = (Probability that A is known) x (info (T) -infoX(T))
+ (Probability that A is unknown) x 0 =

))()((FinfoFinfo
T
F

X−×=

48

TRAINING SET
No Outlook Temp (°F) Humid (%) Windy Class
D1 sunny 75 70 T P
D2 sunny 80 90 T N
D3 sunny 85 85 F N
D4 sunny 72 95 F N
D5 sunny 69 70 F P
D6 ? 72 90 T P
D7 overcast 83 78 F P
D8 overcast 64 65 T P
D9 overcast 81 75 F P
D10 rain 71 80 T N
D11 rain 65 70 T N
D12 rain 75 80 F P
D13 rain 68 80 F P
D14 rain 70 96 F P

49

EXAMPLE

• In the new training set T, we want to test the partition
on the attribute Outlook.
– We have that Outlook is known in 13 cases out of 14.

• Considering the 13 cases for which Outlook is know
you have the following frequencies

1358Total
523Rain
303Overcast
532Sunny
TotalNPOutlook

50

EXAMPLE

• The entropy of the set F (composed by 13 examples
where outlook is known) is
info (F) = - 8/13 * log2(8/13) -5 / 13 * log2(5/13) = 0.961

• The information on the test on Outlook is a weighted
sum

infoOutlook(T) = 5/13 * (- 2/5 * log2(2/5) -3 / 5 * log2(3/5))
+ 3/13 * (- 3/3 * log2(3/3) -0 / 3 * log2(0/3))
+ 5/13 * (- 3/5 * log2 (3/5) -2/5 * log2 (2/5))

= 0.747
gain (Outlook) = 13/14 * (0961-0747) = 0.199

– A bit lower then before

PARTITIONING
• Completely known examples fall entirely in one leaf
• What happens to those examples that have a

unknown value for an attribute used as a test?
Outlook

rainsunny

Humidity ≤ 75

P

true

N

false

Windy

N

true

P

false

P

overcast

D1,D5 D2,D3,D4 D7,D8,D9 D10,D11 D12,D13,D14

D6?

51

PARTITIONING

• Probabilistically generalized: each instance is
associated with a weight w initially set to 1

• Consider a test on A
– if an example e, with weight w in T, has A = Vi (known)

assign it to Ti with weight w and to Tj (j≠i) with weight 0
– if an example e, with weight w in T, has A unknown we

partition it in each Tj with a weight of w*Pvj where Pvj is
the probability of the value Vj in T

– Pvj can be estimated as the sum of the weights of the
instances in T that have A = Vj divided by the sum of all
the weights of the instances in T that have A known

52

EXAMPLE

• Partitioning according to the attribute Outlook
• The 13 cases for which Outlook is known are easy
• The remaining case is assigned to all blocks,

corresponding to the values ​​sunny, overcast and rain,
with weights 5/13, 3/13 and 5/13 respectively

53

Example

• Consider the subset corresponding to outlook =
sunny
No Outlook Temp Humidity Windy Classe Weight
D1 sunny 75 70 T P 1
D2 sunny 80 90 T N 1
D3 sunny 85 85 F N 1
D4 sunny 72 95 F N 1
D5 sunny 69 70 F P 1
D6’ sunny 72 90 T P 5/13

• If this set is further partitioned on the same tests on
humidity, the distribution of classes in subsets are
– Humidity ≤ 75 2 class P, 0 class N
– Humidity> 75 5/13 class P, 3 class N

48

TRAINING SET
No Outlook Temp (°F) Humid (%) Windy Class Weight
D1 sunny 75 70 T P 1
D2 sunny 80 90 T N 1
D3 sunny 85 85 F N 1
D4 sunny 72 95 F N 1
D5 sunny 69 70 F P 1
D6’ sunny 72 90 T P 5/13
D6” overcast 72 90 T P 3/13
D6”’ rain 72 90 T P 5/13
D7 overcast 83 78 F P 1
D8 overcast 64 65 T P 1
D9 overcast 81 75 F P 1
D10 rain 71 80 T N 1
D11 rain 65 70 T N 1
D12 rain 75 80 F P 1
D13 rain 68 80 F P 1
D14 rain 70 96 F P 1

COMPLETE PARTITIONING

56

Outlook

rainsunny

Humidity ≤ 75

P

true

N

false

Windy

N

true

P

false

P

overcast

D1,D5 D2,D3,D4, D6’ D7,D8,D9,D6” D10,D11, D6”’ D12,D13,D14

Misclassified examples

54

EXAMPLE

• We have no longer homogeneous classes so why not
partition again?
– No test produces two subsets with at least two

examples of each
Outlook = sunny

| humidity≤ 75: P (2.0)
| humidity> 75: N (3.4 / 0.4)

Outlook = overcast: P (3.2)
Outlook = rain

| windy = True: N (2.4 / 0.4)
| windy = False: P (3.0)

55

OUTPUT INTERPRETATION

Numbers (A, B) associated with each leaf
• A = total number of training examples sets associated

to the leaf
• B = number of misclassified examples of the training

sets associated to the leaf

N (3.4 / 0.4)
• It means that 3.4 cases belong to the leaf of which

0.4 does not belong to the class N

56

CLASSIFICATION OF NEW CASES
• The main purpose of any ML model is to be able to

classify unseen examples.
• Easy for examples with all attributes known.
• Classification of an example e with A unknown:

– initially assign e weight w=1
– If a node with a test on A is found, we partition it in

all possible sub-branches. In each sub-branch for
Vj assigning e the weight Pvj

– We eventually reach more leaves:
• we obtain a distribution of classes instead of a single

class. The probability of each class is the weight of the
examples that reached the leaf

• if two leaves are associated to the same class C, the
probability of C is given by the sum of the probabilities of
the example weights in the two leaves

57

Example

• You want the classify the example
– Outlook = sunny, temperature =70, Humidity = ?, Windy = F
– Outlook = sunny => first subtree
– Humidity =? It does not allow us to determine whether

humidity ≤ 75

• It descends along the two branches by assigning
them two fractional weights:
– branch humidity ≤ 75 with weight 2.0 / 5.4 = 0.370
– branch humidity > 75 with weight 3.4 / 5.4 = 0630

58

Example

• The example part assigned to the branch humidity ≤
75 is classified as P with probability 100%

• The example part assigned to the branch humidity >
75 is classified as
– N with probability 3 / 3.4 = 88%
– P with probability 0.4 / 3.4 = 12%

• Overall, the relative distribution of all classes is
– P: 0.370 * 0.630 * 100% + 12% = 44%
– N: 0630 * 88% = 56%

EVALUATION OF A DECISION TREE

• A learning algorithm is good if the produced
hypothesys are good at predicting the classification of
unseen cases.

• We divide the example set into two disjoint sets: the
training set and the test set

• Design the decision tree on the training set
• Measure the percentage of examples in the test set

that are correctly classifies
• Repeat the above steps with different sizes of training

sets that are randomly selected

62

NOISE AND OVERFITTING

• In overfitting, a learnt model describes random error
or noise instead of the underlying relationship.

• Overfitting occurs when a model is excessively
complex, such as having too many parameters
relative to the number of observations.

• A model that has been overfit has poor predictive
performance.

• It overreacts to minor fluctuations in the training data.
• Two ways to prevent overfitting:

– Tree pruning: a posteriori removes splits on irrelevant
attributes

– Cross-validation: repeatedly split the known data in training
and test set with the results averaged. 63

59

REMARKS

• C4.5 performs a hill-climbing search in the space of
all possible decision trees

• Remarks:
– The space of possible decision trees is equivalent

to powersets of all possible examples
– Too large
– C4.5 only keeps a single case when searching. It

performs a committment each time it selects a test
attribute.

60

REMARKS

– C4.5 does not perform backtracking. Therefore it
runs the risk of incurring an locally optimal
solutions

– C4.5 uses all training examples at every step to
decide how to refine the tree.

– On the contrary, other methods make decisions
incrementally based on individual examples.

– The result is that the search of C4.5 is less
sensitive to errors in the individual examples.

– Finally, one important feature of C4.5 is that it
selects informative features out of the training set.

DECISION TREES VARIANTS

• Based on outcome
– Classification trees: predicted outcome is a class
– Regression trees: predicted outcome is a real number
– Some similarities and differences (ex. procedure to

determine where to split)
• Ensamble methods: construct more than one tree

– Bagging trees: builds multiple decision trees by repeatedly
resampling training data with replacement, and voting the
trees for a consensus prediction

– Random Forests: uses a number of decision trees in order to
improve the classification rate.

– Boosted trees: used for classification and regression

66

62

Bibliography

[Mit97] TM Mitchell, Machine Learning, McGraw-Hill,
1997

[Qui93b] JR Quinlan, C4.5: Programs for machine
learning, Morgan Kaufmann Publishers, San Mateo,
California, 1993

[Qui96] JR Quinlan, Improved Use of Continuous
Attributes in C4.5, Journal of Artificial Intelligence
Research, 4, p. 77-90, 1996. ftp://ftp.cs.cmu.edu/
project / jair / volume4 / quinlan96a.ps

[Wit99] IH Witten, E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999.

