
1

Can Deep Networks Learn to Play by the Rules?
A Case Study on Nine Men’s Morris

Federico Chesani, Andrea Galassi, Marco Lippi, and Paola Mello

Abstract—Deep networks have been successfully applied to a
wide range of tasks in artificial intelligence, and game play-
ing is certainly not an exception. In this paper, we present
an experimental study to assess whether purely sub-symbolic
systems, such as deep networks, are capable of learning to play
by the rules, without any a-priori knowledge neither of the game,
nor of its rules, but only by observing the matches played by
another player. Similar problems arise in many other application
domains, where the goal is to learn rules, policies, behaviours,
or decisions, simply by the observation of the dynamics of
a system. We present a case study conducted with residual
networks on the popular board game of Nine Men’s Morris,
showing that this kind of sub-symbolic architecture is capable
of correctly discriminating legal from illegal decisions, just from
the observation of past matches of a single player.

Index Terms—Deep learning, rule learning, residual networks,
board games, Nine Men’s Morris

I. INTRODUCTION

GAME playing has been the source of inspiration and
the testbed for many advancements and discoveries in

Artificial Intelligence (AI). In the last decade, neural networks
and especially deep learning techniques [1] have brought a
revolution within AI and games. The application of deep re-
inforcement learning techniques to the development of agents
playing Atari video-games has been one of the most successful
deep learning stories [2]. The design of AlphaGo [3], [4],
a computer system capable of beating several Go world
champions1 has become a milestone in the history of AI.

The development of AI techniques for game playing has
long known the traditional dichotomy between symbolic and
sub-symbolic approaches [5]. Symbolic frameworks are based
on an explicit and formal representation of the domain (often
in a human understandable way) like, for example, in the
form of logic facts and rules. Background knowledge can be
encoded in the system, and reasoning techniques can exploit it
to derive additional information and take decisions: a charac-
terizing aspect is that the reasoning is performed at the level of
symbols. Sub-symbolic (also named connectionist) approaches

2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

The final pubblication is available via DOI:10.1109/TG.2018.2804039
F. Chesani, A. Galassi and P. Mello are with the Department of Computer

Science and Engineering, University of Bologna, e-mail: {federico.chesani,
a.galassi, paola.mello}@unibo.it.

M. Lippi is with the Department of Sciences and Methods for Engineering,
University of Modena and Reggio Emilia, email: marco.lippi@unimore.it.

1https://deepmind.com/research/alphago/.

consider instead reasoning as the result of the computation of
a network of simple processing devices, without the need of
explicitly representing knowledge through symbols. One major
example of this class of models is clearly given by artificial
neural networks. In game playing, both symbolic and sub-
symbolic approaches have historically been widely applied.

A great research effort has been put on learning strategies
for winning games: the majority of the approaches takes
as granted the game rules, often expressed in some formal
description language. Trying to learn game playing without
any kind of external hint of which are the actual game rules,
instead, has rarely been addressed in the literature of AI in
games. Arthur Samuel, in his seminal paper in 1959 on the
application of machine learning techniques to the game of
checkers [6], stated:

“The rules of the activity must be definite and they
should be known. Games satisfy this requirement.
Unfortunately, many problems of economic impor-
tance do not. While in principle the determination
of the rules can be a part of the learning process,
this is a complication which might well be left until
later.”

Even the most recent applications to game playing, such as
AlphaGo, or the system developed by Clark and Storkey [7],
although heavily relying on the computational power of deep
networks, still encode either in the network architecture or in
the input features some information about the rules.

In this work, we want to assess whether a deep learning
approach can be exploited to learn to play by the rules a
board game without any symbolic, background knowledge
about the game rules. We consider as a case study Nine Men’s
Morris, a popular board game whose state space is not huge
with respect to other games of the same kind. However, the
complexity of the rules to be learned, and the large number of
possible decisions to be taken by a player, make such a game
a challenging benchmark.

Our main goal is not to be seen in terms of learning winning
strategies, but rather in terms of learning legal moves. To this
end, we have constructed a dataset of game states and possible
legal moves, by observing the behavior of an AI player based
on a symbolic approach. Such a dataset has been exploited
to train a neural network system named Neural Nine Men’s
Morris (NNMM), based on residual networks [8]. For these
reasons, we do not aim at comparing against any other system
that exploits some (even partially) symbolic approach.

NNMM has been evaluated in terms of (percentage of)
suggested legal moves, resulting in very good performance:
in almost the totality of the cases the network suggests, as

https://doi.org/10.1109/TG.2018.2804039
https://deepmind.com/research/alphago/


2

a first choice, a legal move. Moreover, we have also evalu-
ated, through a quantitative analysis, the “level” of legality
expressed by our network over the first N suggested decisions
i.e. how much the networks are able to exhibit a compliant
behavior with respect to the game rules. Again, results show
that the presented approach is highly effective.

Natural extensions of this kind of analysis could be provided
in other domains, such as decision making [9], anomaly
detection [10], process mining [11]: when rules cannot be
clearly identified or stated, a learning approach to compliance,
based on observed behavior, could be an interesting alternative.
Clearly, games represent the ideal scenario to first test our
idea, as they provide frameworks where game rules are clearly
defined and it is easy to check the legality of decisions.

The paper is structured as follows. In Section II we briefly
revise the game rules, whereas in Section III we describe
how we modeled the game, and which neural networks have
been used in our experiments. In Section IV we present the
dataset built for our purposes, while Section V will report the
experimental results. Section VI will discuss related works,
and finally Section VII will conclude the paper.

II. NINE MEN’S MORRIS

Nine Men’s Morris, also known as Mill Game, Merrils,
or Cowboy Checkers, is a perfect-information strategy board
game for two players. It is a very ancient game, dating
back aroung 1,400 B.C. [12], but still very popular in many
countries around the world. This game has long been analyzed
from the point of view of AI and game theory, and its solution
has been proven to be a draw [13]. Recently, theoretical results
have been found for ultra-strong and extended solutions [14].

There exist several game variants that differ for either the
game board or for the rules. We hereby briefly describe the
most common setting, that has been used in our experiments.
The game board, depicted in Figure 1, consists in three concen-
tric squares and four segments which connect the midpoints of
the sides of the squares. The intersections of two or more lines
create a grid of 24 points where checkers can be placed. Each
player has nine checkers (also called stones or men). The game
proceeds through three different phases, that define the allowed
moves: (1) starting from an empty board, players alternately
place a stone on an empty position; (2) when both players
have placed all their stones, they must slide a checker along a
line to a nearby empty position; (3) if a player remains with
only three stones, then the constraint to move to an adjacent
position is removed: checkers can be moved to any empty
position in the board (the checker can “fly” or “jump”) .

When a player succeeds in aligning three checkers along a
line (“closing a mill”), he/she removes an opponent’s checker
from the board among those checkers not belonging to any
mill.2 The removed checker is said to be “eaten” or “captured”.

The game ends when one of these conditions occurs: (i)
player A removes seven stones of player B, thus leaving B
with less than three stones (A wins); (ii) player A cannot make

2In the case that all the opponent’s checkers are aligned in at least one mill,
one aligned checker is allowed to be removed. If two mills are closed at the
same time, still only one checker can be removed.

Fig. 1. Nine Men’s Morris game board (left) and its symmetry axes (right).

any legal move (A loses); (iii) a configuration of the board is
repeated (draw).3 Whereas the first two ending conditions can
be detected by observing the game state, recognizing the third
condition requires to keep track of the game history.

If we take into account only the game states during phases
(2) and (3), each of the 24 cells of the board can be
either occupied by a white checker, or by a black checker,
or it can be empty. Thus, an upper bound for the number
of possible states is 324, that is approximately 2.8 × 1011.
However, there are further constraints that limit the number
of possible states: for example, if a player has closed a mill,
the opponent cannot have all the 9 checkers on the board. If
board symmetries are considered too, it can be shown that
the game has 7,673,759,269 possible states in phase (2) and
phase (3) [13]. The number of possible game configurations
is thus not dramatically huge: as a comparison, consider
that the chess game allows between 1043 and 1050 different
configurations [15].

The number of moves that a player can do is quite large.
In the most general case, the player faces three decisions: the
checker to move, where to place it and which adversary’s stone
to remove. As explained later in Section III-A, these decisions
can lead to a quite large number of alternative moves.

Summing up, the game enjoys the following characteristics:
1) Symbolic approaches have been proven to successfully

solve and play it. Therefore is a well-known case of
study and we can rely on background knowledge.

2) The dimension and complexity of the state space is not
huge: as a consequence, the process of training a sub-
symbolic approach does not require excessive resources
in terms of time and hardware.

3) The choice of a move implies several decisions, and
a legal move must satisfy constraints that affect both
the single decisions and the move as a whole. As a
consequence, the dimension of the space of legal moves
is relatively small, when compared to the dimension of
the space of possible moves, thus making the selection
of legal moves a difficult and interesting problem (see
Section V-A for details).

For these reasons, the Nine Men’s Morris game represents a
challenging case study for assessing whether a sub-symbolic
system is capable of learning to play by the rules.

3Repetitions can happen only during phases (2) and (3).



3

III. SYSTEM ARCHITECTURE

In this section we describe how we represent the game, and
which architectures have been selected for the neural networks
trained to play the game.

A. Game Modeling

The state of the game consists of four pieces of information:
the board configuration and, for each player, the number of
checkers he/she still has in his hand, the number of checkers
that he/she has on the board and the phase of the game in
which he/she is. The last two pieces of information can be
deducted from the first two. The number of checkers in the
hands of each player can obviously be represented with two
numbers, each of which can assume values from 0 to 9. For the
game board, several different representations could be chosen,
by exploiting a one-dimensional array, a two-dimensional
matrix, or a three-dimensional cube. For the sake of simplicity,
we just used the most straightforward implementation, that
is a plain enumeration of the board cells coded into a one-
dimensional array (the i-th element of the array representing
the i-th cell in the enumeration). Each cell can be occupied
either by a white checker, or by a black checker, or it can
empty. We can easily represent such configurations with three
different values.

A move consists of three distinct pieces of information:
TO: In every game phase, a checker is always placed some-
where. This will be either a newly introduced one during phase
1, or a checker that is already present in the board during
phases 2 and 3. We name this information “TO”. It can assume
24 possible values (the cells of the board).
REMOVE: If placing the checker causes the closing of a mill,
another information that must be encoded in the move is the
adversarial checker to be removed. We name this information
“REMOVE” and it can assume 25 possible values: the 24 cells
of the board plus the none value, in the case that the move
implies no removal. During a single match, the maximum
number of moves which imply a removal is 13, that is 7 by
the winner and 6 by the loser.
FROM: During phases 2 and 3, the checker is moved from
one position to another, so we have to encode also the initial
position. We name this information “FROM”. Therefore, it can
assume 25 possible values: the 24 cells of the board plus the
none value, in the event that the game is in phase 1.

Without knowing the constraints on these three information,
i.e. without any knowledge on the game’s rules, the number of
possible combination, and therefore of possible moves, is 24×
25×25 = 15, 000. This number is quite big compared to other
boardgames: for example, in the game of Go a single decision
has to be taken (19× 19 = 361 positions on the board), while
in the game of chess two decisions have to be taken4 (initial
and final positions of the moving piece – 64 × 64 = 4, 096
possible couples of positions).

4The castling move can be indicated with the coordinates of the king
involved. We are not taking into account the decision involved into promotion.

B. Neural Nine Men’s Morris (NNMM)

Our system thus consists of three different neural networks,
each predicting one part of the move (TO, REMOVE, FROM).
We model the problem as a collection of three supervised
learning tasks, where the target of each task is the partial
decision to be taken by the player at a given board config-
uration. The output size of the TO network is 24 neurons,
which represent the possible positions on the board. The
REMOVE and FROM networks, instead, will also have an
additional special output neuron (thus 25 output neurons)
encoding the case in which no checker has to be moved or
eaten, respectively. For this reason, we also let the TO network
have 25 output neurons (with one extra neuron that is never
used) so that the three networks have identical architectures.
Any network will then provide a single position value among
25 possible ones. Note that exploiting a single neural network
would have produced a number of output classes (all the
possible moves) equal to 15,000 (see Section III-A), which
would have made the training almost unfeasible.

Features have been represented with a binary encoding,
thus exploiting different bits to represent different possible
values of the game state variables. The feature vector thus
composed is described in Table I. It simply consists of the
board configuration and the number of checkers in hand for
each player. In fact, the three networks operate in cascade,
providing the positions chosen by the former ones as input to
the latter ones. Since the output of each network is independent
from the decision it has to make, its input/output structure of
each network only depends on its position in the architecture.
Since the decisions to be taken by the networks are clearly
strongly correlated, exploiting independent networks rather
than a cascade model, thus taking the three decisions (TO,
FROM, REMOVE) independently one from the other, would
have certainly lead to worse performance. Figure 2 illustrates
the overall architecture of the system, which we name Neural
Nine Men’s Morris (NNMM), when the cascade of the three
networks is in the order TO-FROM-REMOVE (TFR). In
Section V we investigate also different arrangements of the
networks, and evaluate through experiments their performance.
We hereby underline the fact that, at this point, no choice has
been made on the internal neural network used for each step.

Finally, we remark that, for any game state, there are legality
constraints both on the choices of each of the three networks,
but also on the whole move. That is, the legality of the parts
does not guarantee the legality of the full move.

Although the chosen network architecture may look specif-
ically tailored for Nine Men’s Morris, its cascade structure
(where the decision on the n-th part of the move depends on
the first n − 1) easily allows to generalize it to other board
games. More precisely, it could be immediately applied to
any board game where one has to choose a piece to move
(FROM), a position where to place it (TO) and possibly also
an opponent’s piece to remove (REMOVE).

C. Residual Networks

A preliminary experimental study [16] was conducted to
choose the architecture for this case of study and to tune its



4

TABLE I
INPUT FEATURES FOR THE THREE NETWORKS IN NNMM.

Feature Bits Description

Player’s board 24 Position of player’s checker on the
board

Adversary’s board 24 Position of adversary’s checker on
the board

Empty board 24 Empty position

Player’s hand 9 The number of checkers in player’s
hand

Adversary’s hand 9 The number of checkers in adver-
sary’s hand

First network choicea 25 Decision taken by the first network of
the system

Second network choiceb 25 Decision taken by the second net-
work of the system

a Present only in the second and third networks
b Present only in the third network

parameters. As a result of this study, we decided to adopt
residual networks, which had achieved the best performance.
We hereby describe the final system that will be adopted in
the experimental evaluation.

Residual networks [8] are a recently introduced architecture
for deep networks that has been specifically designed to
train networks with many layers. Such networks have been
first applied to computer vision tasks, where they achieved
state-of-the-art performance in many data sets: one of the
most impressive results was obtained in the 2015 ImageNet
competition, won by Microsoft Research team with a residual
network with 152 layers. Nevertheless, the proposed frame-
work is generic and thus such networks can be successfully
applied also to other domains. The main idea behind residual
networks is that of replacing a generic (possibly complex)
objective function H(x) to be optimized with its residual,
that is F(x) = H(x) − x. The original function is thus
obtained from the residual by simply adding back the input,
that is H(x) = F(x) + x. Further improvements, such as
the use of pre-activation of weight layers and of dropout
inside the residual unit [17], [18], allow to achieve even better
results than the original model on challenging computer vision
tasks. The optimization problem results to be easier to solve
with respect to traditional (non-residual) deep networks, in
particular when the number of layers increases, which typically
lets these networks achieve better performance.

All the three networks in NNMM are residual networks,
and each of them presents several blocks as that depicted in
Figure 3. Each block follows a fully-connected layer and is
made by two sub-blocks, each consisting of a rectifier linear
unit [19] pre-activation layer, a dropout layer, and a fully-
connected layer. Each network has an initial layer of 200
neurons, followed by a set of residual units stacked one onto
the other. In each residual unit, the first layer contains 300
neurons, while the second 200. TO and FROM networks have
been made by 10 residual units while REMOVE networks
have been made by 30 units. Each network terminates with
an output layer made of 25 neurons, to which the softmax
function is applied, so that we obtain a probability distribution
over the possible positions in the board. The total depth is

Fig. 2. An illustration of our NNMM system, exploiting the TO-FROM-
REMOVE configuration. Each of the three networks takes as input both the
board and the decision taken from the previous network(s) in the cascade.

Fig. 3. Illustration of the residual network used in our experiments.

thus 22 layers for the TO and FROM networks, and 62 for
the REMOVE one.

IV. DATASETS

To evaluate the capability of deep networks to learn legal
moves in Nine Men’s Morris, we built a dataset of game
matches to train our system. To this aim, we exploited a
collection of AI players, all based on symbolic approaches.
Such systems were developed by students for a competition
within the “Foundations of Artificial Intelligence” course at
the University of Bologna. The winner of the competition was
chosen as the “trainer” of our deep networks. Thus, for each
game board, the move of the trainer is used as the supervision
target. This implies that the target moves in the dataset are
not optimal moves according to some criterion, but rather
good moves according to the trainer and, most importantly,



5

they are legal moves. The decision to use this dataset, rather
than sampling from a database in which the optimal moves
are indicated, such as the one presented in [14], came from
the intention to verify if the sub-symbolic system could learn
to play by the rules, by simply observing matches played by
another player.

For each state, the symmetries of the problem shown in Fig-
ure 1 have been exploited to increase the number of examples.
This “Matches Dataset” is composed by 1,628,673 state-move
pairs. Each state in the dataset is unique, therefore for any
state only one move is present. To generate the dataset, the
symbolic trainer has played 7,244 games against itself and the
other AI players. We let some of the games start from initial
random configurations, rather than from the conventional one
(i.e., empty board and nine checkers in each player’s hand).
Some of these random states, and therefore some of the states
obtained during that match, are not reachable5 in a proper
game that starts from the conventional initial state. This feature
of the dataset makes it more general for the task of learning
game rules, as it limits the possible problem of overfitting
on a subset of the whole state space. At the same time, the
generation of the initial board state takes into account some
characteristics of the game to ensure that the rules of the game,
and therefore that legality definition, still hold. Some of the
constraints imposed on the randomly generated configuration
are: the next player to move is the white one, each player
must have at most 9 and at least 3 checkers (among the hand
and the board), both players must hold the same number of
stones in their hands. With these constraints, the state of the
game will always belong to one of the three phases described
in Section II. Moreover, the symbolic players used to generate
the dataset have knowledge of the game rules, therefore they
are capable of making only legal decisions.

As an additional test set, a second dataset was built. It
contains random game states, that have been sampled as
reachable board configurations, without any overlap with the
ones present in the matches dataset. In this way, 2,085,613
states have been gathered. We name this second dataset “States
Dataset”. Such dataset has been used only as a further test set
for our system, with the goal of evaluating the generalization
capabilities of the system on generic states that have not been
reached by a match played by the NNMM’s symbolic teacher.

Both datasets are available online6.

V. EXPERIMENTS

In this section we present our experimental results. After an
analysis of the datasets, aimed to investigate the space of legal
moves, we present three different system configurations. Then,
we describe the tasks on which such systems have been tested,
and we discuss the achieved results. The source code for the
replication of these experiments is available online, together
with the trained neural network models.7

5For a reachable state we mean a state that can be reached, from the initial
board configuration, with a sequence of legal moves only.

6http://ai.unibo.it/DatasetNineMenMorris
7http://ai.unibo.it/NNMM

A. Datasets Analysis

In order to prove that the space of legal moves is very
small in comparison with the space of possible moves, the
two datasets have been analyzed, in particular measuring (1)
the number of legal moves for each state, and (2) the number
of states in which a move is legal.

For both datasets the highest number of legal moves allowed
by a state is 58, while the lowest is 1. The mean number of
legal moves per state is 18 for the Matches Dataset and 22
for the States Dataset. Since our representation allows 15,000
different moves (24 × 25 × 25), the space of legal moves
is at most the 0.39% of the space of possible moves, and on
average it is less than 0.15%.

Moreover, for each of the 15,000 moves, we counted the
number of states in each dataset where such move is consid-
ered legal. On average, a move is legal in the 0.12% of the
total number of states in the Matches dataset, and in the 0.15%
of the States dataset. The number of moves which are always
illegal in both datasets is 1,920, while only 32 moves are legal
in more than 10% of both datasets. There is no move which
is legal in more than 13% of either the Matches or the States
datasets. These 32 moves that are more frequently legal are
all characterized by a REMOVE value of 0 (thus they do not
remove any checker) and FROM values that represent those
positions of the board connected with most other positions.
No special pattern is observed in the TO values.

This analysis suggests that the problem of learning to play
by the rules in Nine Men’s Morris, without any background
knowledge of the problem, is particularly challenging.

B. Setup

The Matches Dataset has been used as the development
dataset. It was partitioned into a training set, a validation
set to monitor learning and to perform parameter tuning and
early stopping, and a test set to evaluate the model at the end
of the training phase. The test set consisted of 10% of the
whole dataset (about 163,000 pairs), while the validation set
consisted in 5% of the dataset (about 81,000 pairs), leaving
about 1.4 million pairs for the training set. Each network was
trained independently, using the game state and, eventually, a
partial part of the move in the dataset as inputs.8 The desired
partial move played by the symbolic trainer was used as target.

The loss function chosen as the objective of training was
the negative log-likelihood of the target class, with an L1
regularization with weight 10−3. Adam [20] was used as
optimizer, with parameters b1 = 0.99 and b2 = 0.999. The
initial learning rate α0 = 2×10−3, was progressively annealed
through epochs with decay proportional to training epoch t,
resulting in a learning rate α = α0

1+k×t , with k = 0.01 for
TO and FROM networks, and k = 0.02 for REMOVE net-
works. Parameters were initialized with He initialization [21],
specifically designed for ReLU activation. We employed mini-
batch optimization, with batch size equal to 20,000. For TO
and FROM networks, dropout was applied to each layer, with
p = 0.1, while it was not used for the REMOVE network. For

8Because the second and the third networks in each configuration need a
partial move as input.

http://ai.unibo.it/DatasetNineMenMorris
http://ai.unibo.it/NNMM


6

early stopped, we used a patience value of 50 epochs. The
whole system was implemented with the Lasagne [22] and
Theano [23] frameworks.

Three different NNMM system configurations were com-
pared, designed with different orders in deciding move parts.
We name them after the order in which the decisions are made.
The configurations are: TO-FROM-REMOVE (TFR), FROM-
TO-REMOVE (FTR) and REMOVE-FROM-TO (RFT). The
first configuration (TFR) is the one which appears to be more
logical for a human player: in each phase of the game the
system has to place a checker somewhere – so that it is the
first decision that has to be taken – then it decides where that
checker has to come from (to know if a mill has been closed)
and if an opponent’s checker should be removed. The second
one (FTR) is an alternative to the first one, where the checker
to be moved is considered the most important decision. The
last one (RFT) can be considered as an extreme case study,
as it seems illogical for a player to decide which opponent’s
checker has to be removed before even deciding which of
his/her own checker should be moved and where.

C. Tasks

The system was tested to evaluate three different aspects:
(1) accuracy, that is the capability of reproducing the same
complete move of its teacher; (2) legality, that is the capability
to suggest, as the best complete move, one that respects all
the game rules; (3) reliability, that is its capability to give
legal decisions a higher probability than non-legal decisions
– thus, considering not only the top-ranked decision, but also
the subsequent ordering.

The accuracy test simply measures how many times the
move suggested by the sub-symbolic system is equal to that
provided by the symbolic trainer. Such a test does not give
any hint about the quality of the system, because it does not
evaluate whether the outputs of the sub-symbolic system are
better or worse than the choices of the symbolic system. A
high accuracy, in this sense, is not necessary for our purpose
of learning legal moves. Yet, it is a useful metric to assess that
the training phase reached a reasonable network configuration.

The legality test is the most important one for our goals,
since it measures whether the system has been able to learn
to play by the rules, by counting how many times the move
suggested by the sub-symbolic system violates any of the game
rules. It has been performed on both datasets.

Finally, the reliability test moves the legality test a step
further. It is designed with the goal of assessing whether the
system is able to correctly discriminate between legal and
illegal decisions, and thus if it has learned a sort of correct
behaviour. To this aim, we separately consider the ranking of
the output – partial or complete – moves for each network,
according to their probability. For a partial move, we hereby
mean the outcome either of the first network, or of the first
and the second networks together. If the system has correctly
learned the concept of game rules, then all the legal decisions
should ideally appear before the illegal ones in such ranking.
It has been performed both on the good moves and the testing
datasets. To give a quantitative measure of this property, we

TABLE II
AN EXAMPLE OF COMPUTATION OF THE RECALL-PRECISION CURVE. FOR

A GIVEN BOARD CONFIGURATION, SUPPOSE THERE EXIST ONLY FIVE
LEGAL DECISIONS, NAMELY OUTPUTS 1,7,9,5,12. FOR EACH VALUE OF N

FROM 1 UP TO 5, WE THUS CONSIDER THE DECISION RANKING THAT IS
NECESSARY TO RETRIEVE N LEGAL DECISIONS: IN THIS WAY, FOR EACH

VALUE OF N WE COMPUTE RECALL AND PRECISION. BOLD NUMBERS
REPRESENT ILLEGAL DECISIONS.

N Decision Ranking Recall Precision
1 1 0.20 (1/5) 1.00 (1/1)
2 1,7 0.40 (2/5) 1.00 (2/2)
3 1,7,9 0.60 (3/5) 1.00 (3/3 )
4 1,7,9,0,4,5 0.80 (4/5) 0.67 (4/6)
5 1,7,9,0,4,5,12 1.00 (5/5) 0.71 (5/7)

build a sort of recall-precision curve as follows. For each
board configuration in the test set, we consider the output
of each network in the pipeline, ranking decisions by their
probabilities, and we compute the percentage of legal moves
(precision) as the number of retrieved legal moves (recall)
increases. Finally, we average over all the states in the test set
for each of the three networks separately. Clearly, for the first
two networks in the pipeline the considered decisions will be
partial moves, while for the last network these will be complete
moves: each network in fact has to know the prediction of
the previous network(s) in the pipeline. In the ideal case,
when all legal decisions precede the illegal decisions, all the
precision values are equal to 100%. Otherwise, if some illegal
move is ranked higher than some legal move, the precision
will decrease accordingly. Table II shows an example of how
such evaluation metric is computed. For the last network the
recall is thus the number of legal complete moves retrieved
upon the number of existing legal complete move, whereas
its precision is the number of legal retrieved complete moves
upon the total number of retrieved complete moves. The
same principle is applied to the second and first networks,
considering only the legality of the partial moves. While the
definition of legal complete move is straightforward, this is
not the case for legal partial moves, which could be subject
to different interpretations. For the purpose of our tests, we
have listed all the possible legal complete moves for each
state and decomposed them into partial ones, so as to define
all the legal partial moves. In the case that one network takes
an illegal decision, this makes every possible decision of the
following networks illegal too. Therefore, those cases where
there is no legal decision available to a network are discarded
during the reliability evaluation of that network. Finally, note
that for the FROM and REMOVE networks, we discarded
the configurations for which no checker is moved/removed,
respectively.9

D. Results and Discussion

Table III reports the accuracy on the Matches Dataset of
each trained network in each configuration (TFR-FTR-RFT),
thus considering the three partial moves separately. Results
show that similar values of accuracy have been achieved on

9Trivially, those cases do not add information with respect to the legality
test, since there is only one legal move.



7

TABLE III
ACCURACY OF THE NETWORKS ON TRAINING, VALIDATION AND TEST

SETS FOR EACH OF THE THREE CONSIDERED CONFIGURATIONS.

Configuration Move part Training Validation Test

TFR
TO 53.07% 51.77% 51.73%
FROM 90.07% 89.43% 88.97%
REMOVE 88.01% 86.54% 85.66%

FTR
TO 75.73% 73.72% 74.17%
FROM 65.00% 63.90% 63.33%
REMOVE 88.54% 86.73% 85.88%

RFT
TO 78.20% 76.40% 76.75%
FROM 68.92% 68.38% 67.94%
REMOVE 81.27% 80.25% 79.45%

0 100 200 300

1.
5

2.
0

2.
5

Learning curve

Epochs

Lo
ss

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

Training Set
Validation Set

Fig. 4. Learning curve of the TO network in the TFR configuration.

training, validation and test sets, thus suggesting that the
networks have maintained a good generalization, and that the
phenomenon of overfitting does not have a strong impact here.
Figure 4 shows an example of learning curve, for the TO
network within the TFR configuration.

In Table IV, we instead report the accuracy of the three
configurations over the complete moves, highlighting the
differences with respect to each phase of the game. It is
interesting to note that the values of accuracy are very similar
for the three network configurations. The game phase where
the system achieves the best accuracy is phase 1.

The most impressive results have been obtained for the
legality test. As depicted in Table V, the system demonstrates
to have learnt to respect all the rules of the game in more
than 99% of the cases, independently from the configuration
of the networks and from the dataset. To better investigate
which are the rules that are more frequently broken by our
system, the legality of partial moves has been tested too. For
the TFR and FTR configurations, the mistakes mostly regard
the constraints on the REMOVE part. The RFT configuration
obtains a slightly higher legality percentage for the REMOVE
network, which suggests that in that case the constraints which
are more often broken regard the whole move.

The reliability test has confirmed that the system is able to
differentiate between legal and illegal decision, holding very
high average precision values for all the values of recall. As

TABLE IV
ACCURACY TEST RESULT.

Configuration All phases Phase 1 Phase 2 Phase 3

TFR 37.20% 47.91% 36.27% 29.19%

FTR 38.13% 49.28% 37.75% 27.58%

RFT 37.52% 48.70% 37.31% 26.33%

TABLE V
LEGALITY TEST RESULTS.

Config. Dataset Whole move TO FROM REMOVE

TFR Matches 99.53% 99.94% 99.96% 99.62%
States 99.53% 99.93% 99.96% 99.71%

FTR Matches 99.53% 99.98% 100.00% 99.63%
States 99.56% 99.98% 100.00% 99.73%

RFT Matches 99.25% 99.91% 100.00% 99.86%
States 99.19% 99.89% 100.00% 99.85%

illustrated in Figure 5, the results on the two datasets are
similar, which confirms that the system has learnt to generalize
well on previously unseen data. The FTR configuration is the
best setting: all the networks maintain a precision of about
99% for all recall percentages (note that the y-axis in the plots
in Figure 5 starts at 0.9). The TFR configuration performs well
for the second and third network, while the first one slightly
loses accuracy as the recall increases. The RFT configuration
not surprisingly results to be the worst (as it is difficult to first
decide a checker to remove, before deciding which checker
to move, and where), but still mantaining a 92% precision at
100% of recall on the States dataset.

VI. RELATED WORK

In [13], the game of Nine Men’s Morris is solved exploiting
brute-force approaches, demonstrating that its solution is a
draw. The study of the game has been pushed forward in [14],
where the “extended strong solution” and the “ultrastrong
solution” are found too. The former is the computation of
the game-theoretic values of all the game states that could be
reached in a match if the players have less than 9 checkers to
place. The latter is the definition of a strategy that, against a
fallible opponent, increases the chances to achieve a result
which is better than the theoretic one. Even though these
studies may have paved the way to our work, their purpose was
very different from ours: their objective was to find optimal
solutions to the game, whereas our focus has been on creating
a system able to learn the game rules.

Game playing is a whole research field in AI, and a review
of the many approaches available in the literature is out of
the scope of this paper. The interested reader can refer to [24]
for a panorama of the main AI techniques. In such a context,
our paper could be classified as an instance of behavioural
learning of Non-Playing-Characters. Usually, reinforcement
learning techniques or evolutionary computation are used to
this end. This thematic is addressed in [25].



8

0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

TFR (matches)

Recall

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

FTR (matches)

Recall

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

RFT (matches)

Recall

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ●
● ●

● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

TFR (states)

Recall

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

FTR (states)

Recall

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

RFT (states)

Recall

P
re

ci
si

on

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

Fig. 5. Reliability of the different networks in each configuration (left to right: TFR, FTR, RFT), reporting precision of retrieved legal moves as a function
of the recall of retrieved legal moves. Top/bottom charts refer to the Matches/States Datasets, respectively. Note that y-axis starts at 0.9.

A main characteristic of our approach is that only sub-
symbolic techniques are exploited. Systems which used com-
binations of sub-symbolic knowledge (acquired through learn-
ing) and symbolic knowledge (encoded into the system itself)
have been proven extremely successful in playing many dif-
ferent games. Backgammon, Chess, Checkers and Go are only
few notable examples of the games which have been addressed
with combination of artificial neural networks and symbolic
techniques, resulting in artificial players capable of playing a
specific game achieving very good results. Among the many,
we can cite the following works: [26], [27], [28], [29], [3].
Yet, such approaches do not use neural networks directly to
decide the move to be played, but rather to rank a list of moves
that are typically generated by some symbolic approach (and,
thus, which are certainly legal).

Recent works that instead employ deep networks for game
playing, such as AlphaGo Fan/Lee [3], AlphaGo Zero [4],
or the system developed by Clark and Storkey [7], consider
only legal moves, by forcing to zero all the illegal options in
the last network weight layer before softmax or by excluding
illegal moves during a symbolic exploration phase. Among the
many features pre-processed and given as input to AlphaGo
Fan/Lee’s neural networks, there are the characteristics of the
status of each intersection of the Go board: liberties, legality,
stone color, number of opponent and own stones that would be
captured, and whether the move is a part of a ladder escape
or capture. AlphaGo Zero, instead, uses only the last board
configurations and players’ choices as features. For the former,
the game symmetries are handled by giving as input to the
networks a mini-batch of all the symmetric states, so that they
can be computed in parallel, while the latter is trained with a
dataset which is augmented considering the symmetries, in a

similar fashion to our work.
Another famous application of deep networks to game

playing was given in [2], where a reinforcement learning
approach was undertaken to train a system to play Atari
videogames, using only information of raw pixels in input,
thus having no a priori knowledge of the game. Such a work,
yet, does not have to deal with the concept of legal move.

An orthogonal approach with respect to our work has been
investigated in the General Game Playing (GGP) competi-
tion [30]. Instead of creating a player specialized in a single
game, the GGP problem consists in creating a system able to
play any kind of game, given its rules. Within this context,
rules are thus explicit knowledge that systems receive as
input, represented in an appropriate language called Game
Description Language [31]. The competition is held once a
year, since 2005, and it provides a benchmark for general
approaches to AI and games. Even if many participants
to this challenge rely only on symbolic techniques, some
notable systems which combine symbolic and sub-symbolic
techniques have been among the participants. For example,
we cite [32], where neuro-evolution is exploited to learn a
game strategy. Although GGP considers the game rules as a
known input, and asks participants to learn game strategies, it
can be considered a very interesting point to further investigate
the generality of our approach. For example, in the context of
GGP, in [33] a symbolic algorithm capable of learning the
rules of a simplified boardgame from a dataset of matches is
presented. The dataset used for the training phase is made by
game states and a non-exhaustive list of legal moves. Despite
this similarity, Nine Men’s Morris does not meet the definition
of “simplified boardgame”, thus making it unfeasible to apply
such a solution to our case study.



9

In this work we used as training set a collection of (only)
legal moves: in other words, we provided to the neural network
only “positive” examples. Other approaches instead require
both positive and negative examples, that is also a collection
of illegal decisions. For example, in [34], variant chess rules
are learned as extended logic programming theories from both
positive and negative examples, background knowledge and by
applying theory revision. Although being a very interesting
approach, the need for both types of examples might be not
feasible in a number of domains, were only observations of
correct system dynamics are available. This is a common
situation in fields like, for example, process mining, anomaly
detection, human behaviour simulation and profiling.

Finally, it is relevant to underline that many other models
of artificial neural networks exist, and thus different system
architectures could be employed, possibly leading to better
results. Stochastic depth networks [35] randomly drop layers
during training, allowing to greatly increase the depth of the
networks. Since we modeled the move as a sequence of deci-
sions, Recurrent Neural Networks [36] could also be a useful
alternative architecture, as they are usually applied for the clas-
sification of data sequences (e.g., in speech recognition tasks).
Dense networks [37] exploit the same intuition of residual
networks, creating shortcuts between layers at different depth,
and concatenating the outputs instead of summing them. A
deeper investigation of different neural network architectures
and training techniques applied to our context could be the
subject for future works.

VII. CONCLUSIONS

Deep learning methods are widely employed in game play-
ing. The aim of this work was to analyze whether such sub-
symbolic systems are capable of learning to play a game by
the rules just by observing a single player matches, without the
need to explicitly model or encode any background knowledge
of the game within the architecture of the network, nor
providing any information about legality during the supervised
training. Our analysis exploits residual networks, a particular
type of deep networks specifically designed to learn models
with many layers. Experimental results show that such systems
are capable not only to suggest legal decision as best choices,
but also of preferring legal decisions to illegal ones. Clearly,
the chosen architecture and move encoding strongly affect
the percentage of both possible and legal moves. Yet, it is
worth remarking that, in the general case, it is not always
possible to define an encoding that discards a priori illegal
moves: in many board games, in fact, such as Nine Men’s
Morris but also chess or checkers, the legality of the move
depends on the game status. In addition, looking forward
beyond games, there are many applicative scenarios in the
context of behavior compliance where it is just not possible to
define in advance the concept of legality, and thus it certainly
cannot be encoded within the move modeling. The proposed
architecture is general enough to be employed with any board
game where checkers are moved from a position to another,
and opponent checkers are removed. Checkers and chess are
other examples of such games. Thus, the impact of this kind of

result goes beyond the application to game playing, opening
the doors to the application of deep networks in many contexts
where behavioural rules and decision policies could be learned
directly from data, such as anomaly detection tasks.

Future works in this field may concern a quantitative eval-
uation of the impact of the dataset in the learning: the use
of a training set with better choices (i.e. a dataset with the
optimal move computed according to [13] and [14]) or with
a different number of training data could enhance or decrease
the system performance. The necessity of an high number of
high quality data or a lack of it could heavily influence future
application of these techniques. The next step for this work,
before trying to apply it to more complex real-life or industrial
contexts, could be to investigate its performances with other
board games with complex rules, such as, for example, chess.

ACKNOWLEDGMENTS

The authors would like to thank all the students who have
participated to the Nine Men’s Morris Challenge as part of
the course of “Foundations of Artificial Intelligence” at the
University of Bologna, providing the software used for the
creation of the database: we thank in particular the authors
of DeepMill. We would also like to thank the anonymous
reviewers for their useful suggestions which have contributed
to improve the quality of this work.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[5] J. Dinsmore, The symbolic and connectionist paradigms: closing the
gap. Lawrence Erlbaum, 2014.

[6] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959.
[Online]. Available: http://dx.doi.org/10.1147/rd.33.0210

[7] C. Clark and A. J. Storkey, “Training deep convolutional neural networks
to play go,” in Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, ser. JMLR
Workshop and Conference Proceedings, F. R. Bach and D. M. Blei, Eds.,
vol. 37. JMLR.org, 2015, pp. 1766–1774.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[9] C.-L. Hwang and K. Yoon, Multiple attribute decision making: methods
and applications a state-of-the-art survey. Springer Science & Business
Media, 2012, vol. 186.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[11] W. van der Aalst et al., Process Mining Manifesto. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 169–194. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28108-2 19

[12] R. C. Bell, Board and table games from many civilizations. Courier
Corporation, 1979, vol. 1.

[13] R. Gasser, “Solving nine men’s morris,” Computational Intelligence,
vol. 12, no. 1, pp. 24–41, 1996.

http://dx.doi.org/10.1147/rd.33.0210
http://doi.acm.org/10.1145/1541880.1541882
http://dx.doi.org/10.1007/978-3-642-28108-2_19


10

[14] G. E. Gévay and G. Danner, “Calculating ultrastrong and extended
solutions for Nine Men’s Morris, Morabaraba, and Lasker Morris,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 8,
no. 3, pp. 256–267, Sept 2016.

[15] L. V. Allis et al., Searching for solutions in games and artificial
intelligence. Ponsen & Looijen, 1994.

[16] A. Galassi, “Symbolic versus sub-symbolic approaches: a case study
on training deep networks to play nine men’s morris game,” Master’s
thesis, University of Bologna (Italy), Mar 2017. [Online]. Available:
http://amslaurea.unibo.it/12859/

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision. Springer,
2016, pp. 630–645.

[18] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[19] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, G. Gordon, D. Dunson, and M. Dudk, Eds., vol. 15.
Fort Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323.
[Online]. Available: http://proceedings.mlr.press/v15/glorot11a.html

[20] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[22] S. Dieleman et al., “Lasagne: First release.” Aug. 2015. [Online].
Available: http://dx.doi.org/10.5281/zenodo.27878

[23] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/
1605.02688

[24] G. N. Yannakakis and J. Togelius, “A panorama of artificial and com-
putational intelligence in games,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 7, no. 4, pp. 317–335, Dec 2015.

[25] H. Muñoz-Avila, C. Bauckhage, M. Bida, C. B. Congdon, and
G. Kendall, “Learning and game ai,” in Dagstuhl Follow-Ups, vol. 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[26] G. Tesauro, “Temporal difference learning and td-gammon,” Commun.
ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995. [Online]. Available:
http://doi.acm.org/10.1145/203330.203343

[27] M. Lai, “Giraffe: Using deep reinforcement learning to play
chess,” CoRR, vol. abs/1509.01549, 2015. [Online]. Available:
http://arxiv.org/abs/1509.01549

[28] O. E. David, N. S. Netanyahu, and L. Wolf, DeepChess: End-to-End
Deep Neural Network for Automatic Learning in Chess. Cham:
Springer International Publishing, 2016, pp. 88–96. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-44781-0 11

[29] K. Chellapilla and D. B. Fogel, “Evolving neural networks to play
checkers without relying on expert knowledge,” IEEE Transactions on
Neural Networks, vol. 10, no. 6, pp. 1382–1391, Nov 1999.

[30] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the aaai competition,” AI magazine, vol. 26, no. 2, p. 62, 2005.

[31] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. (2008)
General Game Playing: Game Description Language Specification.

[32] J. Reisinger, E. Bahceci, I. Karpov, and R. Miikkulainen, “Coevolving
strategies for general game playing,” in 2007 IEEE Symposium on
Computational Intelligence and Games, April 2007, pp. 320–327.

[33] Y. Björnsson, “Learning rules of simplified boardgames by observing,”
in Proceedings of the 20th European Conference on Artificial Intelli-
gence. IOS Press, 2012, pp. 175–180.

[34] S. Muggleton, A. Paes, V. Santos Costa, and G. Zaverucha,
Chess Revision: Acquiring the Rules of Chess Variants through
FOL Theory Revision from Examples. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 123–130. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-13840-9 12

[35] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646–661.

[36] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural computation, vol. 1,
no. 2, pp. 270–280, 1989.

[37] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, vol. 1, no. 2, 2017,
p. 3.

Federico Chesani , PhD is Research Assistant at the
Department of Computer Science and Engineering
at the University of Bologna. His research interests
cover rule-based systems, Complex Event Process-
ing, Business Process Management, and theoretical
and practical aspects of Logic Programming with
a focus on abductive reasoning. He is author of
more than 70 papers in international conferences and
journals. He has been involved in several national
and international projects.

Andrea Galassi holds a Master Degree in Computer
Engineering and is PhD student at the Department of
Computer Science and Engineering at the University
of Bologna. His research activity concerns artificial
intelligence and machine learning, focusing on deep
networks and their applications to games, CSPs, and
argumentation mining.

Marco Lippi received the PhD in Computer and
Automation Engineering from the University of Flo-
rence in 2010. Currently, he is an Assistant Professor
at the Department of Sciences and Methods for En-
gineering, University of Modena and Reggio Emilia.
He previously held positions at the Universities of
Florence, Siena and Bologna, and he was visiting
scholar at Université Pierre et Marie Curie, Paris.
His work focuses on machine learning and artifi-
cial intelligence, with applications in bioinformatics,
time-series analysis, computer vision, game playing,

and argumentation mining. In 2012 he was awarded the “E. Caianiello” prize
for the best Italian PhD thesis in the field of neural networks.

Prof. Paola Mello , PhD is currently Full Professor
at the Department of Computer Science and Engi-
neering of the University of Bologna. Her research
activity focuses on artificial intelligence, knowledge
representation and reasoning, logic programming,
multi-agent systems, applications of expert systems
with particular emphasis on medical domain. More-
over, she is currently active on formal specification
and on the automatic verification of (interaction)
protocols, workflow patterns, medical guidelines,
and Web Services. Paola Mello is authors of several

scientific papers published in important national end international conferences
and journals, and she has been involved in a number of national and
international (EU) projects. She was President of the Italian Association for
Artificial Intelligence and Head of the Department of Computer Science and
Engineering of the University of Bologna. She is EurAI fellow.

http://amslaurea.unibo.it/12859/
http://proceedings.mlr.press/v15/glorot11a.html
http://dx.doi.org/10.5281/zenodo.27878
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://doi.acm.org/10.1145/203330.203343
http://arxiv.org/abs/1509.01549
http://dx.doi.org/10.1007/978-3-319-44781-0_11
http://dx.doi.org/10.1007/978-3-642-13840-9_12
http://dx.doi.org/10.1007/978-3-642-13840-9_12

	Introduction
	Nine Men's Morris
	System Architecture
	Game Modeling
	Neural Nine Men's Morris (NNMM)
	Residual Networks

	Datasets
	Experiments
	Datasets Analysis
	Setup
	Tasks
	Results and Discussion

	Related Work
	Conclusions
	References
	Biographies
	Federico Chesani
	Andrea Galassi
	Marco Lippi
	Prof. Paola Mello


