
Model Agnostic Solution of

CSPs via Deep Learning:

a Preliminary Study

Andrea Galassi

Michele Lombardi

Paola Mello

Michela Milano

Can a Deep Neural Network learn

to solve a combinatorial problem?

It All Started with a Question

∃𝑥 ∈ ℕ𝑛 ∣ 𝑓(𝑥) = ⊤A blackbox view of a CSP:

f(x) is non-linear

f(x) is non-smooth

x is discrete

DNNs can deal effectively with 2 out of 3 issues

Why would you do it in the first place?!?

It All Started with a Question

Is it going to generalize?!?

How much initial data will we need?!?

What about the overhead?!?

Of course we could also ask:

They are all good points! …But we will (mostly) set them aside

Still we have an interesting research question

Not a Brand-new Idea

Adorf, H.M., Johnston, M.D.: A discrete stochastic neural network algorithm for

constraint satisfaction problems [1990]

Lee, J.H.M., Leung, H.F., Won, H.W.: Extending genet for non-binary csp’s [1995]

Wang, C.J., Tsang, E.P.K.: Solving constraint satisfaction problems using neural

networks [1991]

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, Samy Bengio: Neural

Combinatorial Optimization with Reinforcement Learning [2016]

…

There have been other attempts:

What’s different here?

Existing approaches: problem-specific (better performance)

We will be problem-agnostic (no human prior)

Getting to it…

How do we solve a CSP?

We iteratively:

How do we solve a puzzle/solitaire?

We iteratively:

Humans can learn the game by watching someone else play…

Can DNNs do the same?

Evaluate the current partial solution

Choose a new variable-value assignment

Consider the current state of the board

Choose a new move

The Learning Problem

The ML task:

Input: a partial solution

Output: a feasible assignment

Feasible?

Local feasibility: GAC or similar level of consistency

Global feasibility: guaranteed extension to full solution

Representation:

Boolean vectors, one-hot encoding

Problem agnostic, but size-depedent

𝑥𝑖 ∈ {1. . 𝑛}, 𝑥𝑖 = 𝑗 0 0 0 1 0

1 2 3 j n

... ...

The Training Data

1 2 5

Example = partial solution + one (globally) feasible assignment

3 0Starting point = complete solution Possible deconstructions

1

2 5 3 0 1

2

5 3 0 1 2

5

3 0 1 2 5

3

0 1 2 5 3

0

Target

Input

Two main approaches:

Random: pick one deconstruction and repeat

Systematic: consider all deconstructions and repeat

The Training Data

1 2 5

Example = partial solution + one (globally) feasible assignment

3 0Starting point = complete solution

1

2 5 3 0 1

2

5 3 0 1 2

5

3 0 1 2 5

3

0 1 2 5 3

0

Possible deconstructions

Target

Input

The target move is only one of the possible feasible choices!

There may also be examples with conflicting output

Benchmarks

N-Queen Completion (8x8)

Input: binary 64-vector

Ouput: binary 64-vector

Training (start): 8 solutions + all symmetries

Test (start): 4 solutions + all symmetries

Systematic deconstruction

Partial Latin Square (10x10)

Input: binary 1000-vector

Ouput: binary 1000-vector

Training (start): 5k/10k solutions (over ~1031)

Test (start): 5k/10k solutions (over ~1031)

Random deconstruction

Deep Neural Network

Network architecture:

Pre-activated residual networks

> 22 layers (benchmark dependent)

Feed-forward,

Fully connected

Width: 100-500 (benchmark dependent)

Training:

Mini-batch optimization with shuffling and dropout

Validation data: 10% of the training set

Early-stop after 50 epochs without improvements

Can DNNs Imitate the Original Player?

Can DNNs Imitate the Original Player?

For almost filled boards, only on the training set

No generalization on the test set (as expected)

Can DNNs Choose Feasible Assignments?

Can DNNs Choose Feasible Assignments?

Yes! Quite surprisingly

Random selection shown as a baseline

Can DNNs Improve Search?

Modest improvement

Feasibility does not necessarily translates to performance

…But this is not the right setup

Final Remarks and Open Questions

On the practical side

Generalize between different problem sizes (e.g. pointer networks)?

Use fewer solutions?

Add some human prior information?

Make the DNN search aware?

On the scientific side

Has the network learned some “abstract” rules?

Is there a preference for certain constraints?

Why the performance dip for average fill levels?

Main facts

Problem agnostic approach to solve a CSP via a DNN

Focus on feasibility rather than optimality

www.unibo.it

AI Group @DISI

http://ai.unibo.it

Michela Milano
<michela.milano@unibo.it>

Michele Lombardi
<michele.lombardi2@unibo.it>

Andrea Galassi
<a.galassi@unibo.it@unibo.it>

Paola Mello
<paola.mello@unibo.it@unibo.it>

mailto:michele.lombardi2@unibo.it

