Introduction to Netlogo

Agent-based simulation

Netlogo

Modeling complex systems

* Programmable modeling environment for simulating
natural and social phenomena

— Well suited for modeling complex systems
evolving over time

— Hundreds or thousands of independent agents
operating concurrently

— Exploring the connection between the micro-level
behavior of individuals and the macro-level
patterns that emerge from the interaction of many
individuals

Netlogo

Modeling complex systems

e Easy-to-use application development environment

— creating custom models and quickly testing
hypotheses about self-organized systems

— simple scripting language
— user-friendly graphical interface
— runs on JVM

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL

Netlogo

Practical Info

e Download link:

— http://ccl.northwestern.edu/netlogo/download.sh
tml

— Launch Netlogo through command line:
* S /{netlogo _download_folder}/netlogo.sh
* Online doc:
— https://ccl.northwestern.edu/netlogo/docs/

* Book for agent-based modeling (special focus on
Netlogo):

— http://www.intro-to-abm.com/

http://ccl.northwestern.edu/netlogo/download.shtml
http://ccl.northwestern.edu/netlogo/download.shtml
http://ccl.northwestern.edu/netlogo/download.shtml
https://ccl.northwestern.edu/netlogo/docs/
https://ccl.northwestern.edu/netlogo/docs/

Netlogo
History snapshot

e LOGO (Papert & Minsky, 1967)

— theory of education based on Piaget’s constructionism
(“hands-on” creation and test of concepts)

— simple language derived from LISP

— turtle graphics and exploration of “micro-worlds”
e StarlLogo (Resnick, 1991), MacStarLogo, StarLogoT

— agent-based simulation language
* NetLogo (Wilensky, 1999)

— further extending StarLogo (continuous turtle coordinates,
cross-platform, networking, etc.)

Netlogo
The world of Netlogo

* NetLogo is a 2-D world made of 4 kinds of
agents:

— Patches - make up the background or “landscape”
— Turtles - move around on top of the patches
— Links - connect two turtles

— The Observer - oversees everything going on in the
world

Graphical Interface

Controls

e Controls allow to run and manage the flow of
execution

— Buttons: initialize, start, stop, step through the

model

* “Once” button execute one action

setup

* “Forever” button repeat the same action until

90 &}
S

——pressed again

— Functions with the name of the buttons specify
the action executed on click

— Command centre: ask agents to execute specific
commands “on the fly”

Graphical Interface
Settings

» Settings allow to modify parameters
— Sliders: adjust a quantity from min to max by an increment

population =126

population 126

— Switches: set a Boolean variable
incentivi_installazione? = false

on . .
Eﬂﬁ Incentivi_Installazione

— Choosers: set a value from a list

t.a J file = “Beats/seth2.csv”
v

Beatsfrock! csv

Beatsjrockl.csv
Beatsfsethl.csv

Beats/seth2.csv Introduction to Netlogo

Graphical Interface

Views
Views allow to display information

— Monitors display the current value of variables

kw INSTALLATI 2013
314

— Plots: display the history of a variable’s value

INCENTIVI INSTALLAZIONE 2013
0

INCEMTIVI 2013
752004

TOTALE SPESA 2013
752604

20

Roe

Average ROE

2007

anni

2017

Mzo1z
Ezo1z
HMzo14
Wzo1s
Wzo1s
O zoo7
O zoos
[Jzoo09
Ozoio
B zo11

— Output text areas, log text info

Introduction to Netlogo

Graphical Interface
Views

* Graphic window, the main view of the 2-D Netlogo world

Model evolution
(based on discrete

time-steps) Model agents

10

Programming Concepts
Agents

e Agents carry out their activity, all
simultaneously

— Patches don’t move, form a 2-D wrap-around grid,
have integer coordinates (pxcor,pycor)

— Turtles move on top of patches (not necessarily in
their centre), have decimal coordinates (xcor,ycor)
and orientation (heading)

— Observer can create new turtles, can have
read/write access to all the agents and variables

Programming Concepts
Procedures & Functions

e Commands (“t0” keyword)

— Action for the agents to carry out (“void”
functions)

— Example with 2 input arguments:

draw-polygon [num-sides size]
pd ;; pen down, draw
repeat num-sides
[fd size ;; forward ‘size’ steps
rt (360 / num-sides)] ;; rotate

Programming Concepts
Procedures & Functions

* Reporters (“ ")
— Report a result value

— Example with 1 input arguments:

absolute-value [number]

if-else number >= 0
[report number]
[report 0 — number]

* Primitives
— Built-in command or reporters
— Some have an abbreviated form (create-turtle <--> crt)

* Procedures
— Custom commands or reporters (user made)

Programming Concepts
Variables

* Variables — places to store values

— Global variables: only one value for the variable
and every agent can access it

— Turtle and Patch variables: each turtle/patch has
its own value for every turtle/patch variable

— Local variables: defined and accessible only inside
a procedure (scope=narrowest square brackets or
procedure itself)

Programming Concepts

Variables
* Built-in variables
— Ex. turtle variables: color, xcor, ycor, etc.
— Ex. Patch variables: pcolor, pxcor, etc.
e Custom variables
— Defining global variables
global [clock]
— Defining turtle/patch variables
turtles-own [energy speed]

patches-own [friction]

Programming Concepts

Variables
Custom variables
— Defining global variables
— Defining turtle/patch variables
— Defining local variables:
* let variable wvalue

* Creates a new local variable and gives it the desired
value

swap-colors [tl1 t2]
let temp color-of tl

— Setting a variable values (after its definition):
* set variable value

Programming Concepts
AsK

e Ask — specify commands to be run by turtles
or patches

— Asking all turtles
ask turtles [..]
— Asking all patches
— Asking N turtles
ask n-of N turtles [..]

* Observer code cannot be inside any “ask”
block

Programming Concepts

Variables
Setting variables
— Setting the color of all turtles
ask turtles[set color red]
— Setting the color of all patches
ask patches|[set pcolor red]

— Setting the color of the patches under the turtles
ask turtles [set pcolor red]

— Setting the color of one turtle (identify by ID)
ask turtle 5 [set color green]

— Or
set color-of turtle 5 green

— Setting the color of one patch (identified with coordinates)
ask patch 2 3 [set pcolor green]

Introduction to Netlogo 18

Programming Concepts
Agent sets

* Agent set, definition of a subset of agents (not a keyword)
— All blue turtles
turtles with [color = blue]

— All blue turtles on the patch of the current caller (patch or
turtle)

turtles-here with [color = blue]
— All turtles less than 5 patches away from caller
turtles in-radius 3
— The 4 patches to the east, north, west and south of the caller

patches at-points [[1 O] [0 1] [-1 O]
[0 -11]

Introduction to Netlogo

19

Programming Concepts
Agent sets

* Using agent sets

— Ask such agents to execute a command
ask <agentset> [..]

— Check if there are such agents
show any? <agentset>

— Count such agents
show count <agentset>

* Ex.-remove the richest turtle (with the

maximum “assets” value):
ask max-one-of turtles [sum assets] [die]

agentset command/action

Programming Concepts
Breeds

Breed, a “natural” kind of agent set (other species than
turtle)

[wolves sheep]

A new breed comes with automatically derived primitives:

create-<breed>
create-custom-<breed>
<breed>-here
<breed>-at
The breed is a turtle variable
ask turtles 5 [if breed=sheep]
A turtle agent can change breed
ask turtles 5 [set breed sheep]

Introduction to Netlogo

21

Exercise 1
Basic Ants Model

* Verysimple model as a first
“hands-on” experience

* A colony of ants forages for
food

— Tough each ant follows a set
of simpler rules, the colony as
a whole act in a sophisticated
way

Wilensky, U. (1997). NetLogo Ants model.
http://ccl.northwestern.edu/netlogo/mo
dels/Ants. Center for Connected Learning
and Computer-Based Modeling,
Northwestern University, Evanston, IL.

Exercise 1
Ants Model

* When an ant finds a piece of food, it carries
the food back to the nest, dropping a chemical
as it moves

 When other ants “sniff” the chemical, they
follow the chemical toward the food

* As more ants carry food to the nest, they
reinforce the chemical trail

Exercise 1
Model Usage

* Click the SETUP button to set up the ant nest (in
violet, at center) and three piles of food then click
the GO button to start the simulation.

— The chemical is shown in a green-to-white gradient.

e The EVAPORATION-RATE slider controls the
evaporation rate of the chemical. The DIFFUSION-

RATE slider controls the diffusion rate of the
chemical.

* If you want to change the number of ants, move the
POPULATION slider before pressing SETUP

Exercise 1
Things to notice

 The ant colony generally exploits the food
source in order, starting with the food closest
to the nest, and finishing with the food most
distant from the nest

* |t is more difficult for the ants to form a stable
trail to the more distant food, since the
chemical trail has more time to evaporate and
diffuse before being reinforced

Exercise 1
Things to notice

* Once the colony finishes collecting the closest
food, the chemical trail to that food naturally
disappears, freeing up ants to help collect the
other food sources.

— The more distant food sources require a larger “critical
number” of ants to form a stable trail.

 The consumption of the food is shown in a plot.

— The line colors in the plot match the colors of the food
piles.

Exercise 1

Model Extensions

1. Try different placements for the food sources

— What happens if two food sources are equidistant from
the nest?

2. In this project, the ants use a “trick” to find their way
back to the nest: they follow the “nest scent.”

— Real ants use a variety of different approaches to find
their way back to the nest.

— Try to implement some alternative strategies.

3. In the uphill-chemical procedure, the ant “follows the
gradient” of the chemical. That is, it “sniffs” in three
directions, then turns in the direction where the
chemical is strongest.

— Try variants of the uphill-chemical procedure, changing
the number and placement of “ant sniffs.”

Exercise 2
Ant Colony Optimization e TSP

 Goal: implementing the Ant
System algorithm® and use it to
solve the Traveling Salesman
Problem

e Based on the observation of
ants behaviour

— Positive feedback based on
pheromone tracks which
reinforce the best solution
components

"Dorigo, M., Maniezzo, V., and Colorni, A., The Ant
System: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics, Vol. 26, No. 1.
(1996), pp. 29-41.
http://citeseer.ist.psu.edu/dorigo96ant.html|

Introduction to Netlogo 28

Exercise 2
Ant Colony

* Asvyou already know

— Ants leave a pheromone trail while going from the
nest to food sources (and vice versa)

— Ants tend to choose (with higher probability)
routes with greater amount of pheromones

— Cooperative interaction which leads to an
emergent behaviour, that is finding the shortest
path

Exercise 2
ACO

Probabilistic model (pheromone model) used
to recreate the pheromone trails left by ants

Ants incrementally build the component of a
solution

Ants perform stochastic steps on a fully
connected graph (construction graph)

Constraints used to obtain a feasible solution

Exercise 2
ACO and TSP

* A possible model for TSP:

— The graph nodes are the city to visit (the
components of a solution)

— The edges are the connections between the cities
— A solution is a Hamiltonian circuit in the graph

— Constraints are used to avoid loops, so that an ant
can visit a city exactly once

Exercise 2

Information sources

* Edges or vertexes (or both) have two
information:
— Pheromone 1, which stands in for natural trail left

by ants and represents the long term memory of
ants in relation to the global search process

— Heuristic value n, i.e. the a priori knowledge on
the problem

Exercise 2
ACO System

The ants follow a path on the construction
graph and build a solution

They used a transition (probabilistic) rule to
choose the next node to visit

Both pheromone and heuristic are taken into
account

Pheromone values are adjusted based on the
quality of the solution found

Introduction to Netlogo
End

Additional info, questions, etc..
andrea.borghesi3@unibo.it

