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Why do we need attention?

• Neural Networks are cool. They can learn lot of 
stuff and do amazing things.

• BUT! They are sub-symbolic system: knowledge is 
stored as numerical values

Andrea

Galassi



Why do we need attention?

Knowledge acquired:

3, 2, 2, 0, 2; 2, 7, 7, 4, 1; 1, 1, 6, 2, 7;

2, 1, 2; 8, 2, 1; 1, 2, 3; 3, 2, 4; 1, 6, 6;

1, 1; 4, 2; 3, 5
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Why do we need attention?

• Recurrent Networks can be used to create 
sequence-to-sequence models

• BUT! They tend to forget long-range dependencies
Learning long-term dependencies with gradient descent is difficult (Bengio et al., 1994)
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What is Neural Attention?

• Technique that can be applied in neural networks 
models to compute a specific weight for each input 
element, which assess its relevance

• Filter of the input => better results ☺

• Interpretable result: the higher the weight, the more 
relevant is the input ☺

• Seq-to-seq models that remember long-range 
dependencies☺

• (most of the cases) Computationally cheap☺
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Explainability!

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al., 2015)

Deriving Machine Attention from Human Rationales (Bao et al., 2018)
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Core Attention Model
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General Attention Model
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Uses
• Embedding: the context is way smaller than the input

• Dynamic representation: if q changes, c changes !

• Selection: the weights can be used to classify the keys

• Seq-to-seq models

• Interaction between two set of data (co-attention)
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Compatibility Functions
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Relevance of a key

Similarity to a 
learned model wimp

Similarity to q

• Compute the energy scores



Distribution Functions
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Properties Sparsity
Speeds up the 
computation

Locality
Selection Windows

Gaussians

Logistic sigmoid Softmax Sparsemax Hard/Local
Attention
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• From energy scores to weights

Martins & Astudillo, 2016Kim and Kim, 2018 Gregor et al., 2015;
Luong et al., 2015;

Xu et al., 2015; Yang et al., 2018



Other topics

• Seq-to-seq models

• Interaction between
two set of data (co-attention)

• Multi-output attention

• Exploiting knowledge: supervised attention
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Seq-to-seq
• Perform attention multiple times

• Each time, one of the keys is used as query

ATTENTION

SERVICE WAS EXCELLENT

ATTENTION ATTENTION

SERVICE

WAS

EXCELLENT

q0 K

c0

q1 q2

c1 c2
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Multi-input attention: Co-attention
• If q is matrix? Two matrices of data: K and Q

• Attention on both

• Interactions between the two sets

• Coarse Grained:
– Embedding of the other 

set

• Fine Grained:
– Co-attention matrix G:

Energy score for each pair
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Attentive Pooling Networks (dos Santos et al., 2016)

Hierarchical question-
image co-attention for 

visual question answering 
(Lu et al., 2016)



Multi-output attention
• More than one relevance distribution

– Change of parameters size
A structured self-attentive sentence embedding (Lin et al., 2017)

– Multiple attention in parallel: Multi-head attention
Attention is all you need (Vaswani et al., 2017)

– In classification task:
a different attention for each possible class
• Better error analysis
Interpretable emoji prediction via label-wise attention lstms (Barbieri et al., 2018)

• Possible to enforce different attention distributions through 
regularization

Multi-head attention with disagreement regularization (Li et al., 2018)
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Supervised Attention
• Pre training, to model some knowledge

– Detection of relevant parts
Rationale-augmented convolutional neural networks for text classification (Zhang et al., 2016)

• Attention as an auxiliary task
– Model specific knowledge

• Relevance information
Neural machine translation with supervised attention (Liu et al., 2016)

• Semantic information
Linguistically-informed self-attention for semantic role labeling (Strubell et al., 2018)

– Mimic an existing attention model:
Transfer Learning!

1) Train attention model on a source task/domain

2) Use the this model for supervised learning on a target task/domain
Deriving machine attention from human rationales (Bao et al., 2018)

Improving multi-label emotion classification via sentiment classification with dual attention transfer network (Yu et al., 2018)
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Conclusion
• Attention is nowadays a key component in neural

architectures

• Improves neural architectures, allowing also their
explanation, without increasing costs

• Popular trend in NLP and CV, but not only

– 40+ works EMNLP18

– 40+ works AAAI18

– 30+ works IJCAI18

• Future: Could it be used to understand deep networks?
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This and much more on

Attention, please!
A Critical Review of

Neural Attention Models in NLP
Galassi A., Lippi M., Torroni P., 2019

https://arxiv.org/abs/1902.02181
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