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a useful tool to improve and understand
neural networks
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Why do we need attention?

 Neural Networks are cool. They can learn lot of
stuff and do amazing things.

 BUT! They are sub-symbolic system: knowledge is
stored as numerical values
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Why do we need attention?
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Why do we need attention?

* Recurrent Networks can be used to create
sequence-to-sequence models

« BUT! They tend to forget long-range dependencies

Learning long-term dependencies with gradient descent is difficult (Bengio et al., 1994)
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What is Neural Attention?

 Technique that can be applied in neural networks
models to compute a specific weight for each input
element, which assess its relevance

* Filter of the input => better results ©

* Interpretable result: the higher the weight, the more
relevant is the input ©
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Explalnablllty'

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— — mountain in the background.

A little girl sitting on a bed with A group of Eeogl sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al., 2015)
Task: Hotel location

you get what you pay for . not Lhe c]eanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for J68ai6H and price , this ca n’t be beaten . but it is

cheap for a reason . if you come expecnng the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

A n d re a Task: Hotel cleanliness

you get what you pay for . not the SISAHigSE rooms but bed was §léaiH and so was bathroom . bring your own towels

though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it
[ is cheap for a reason . if you come expecting the hilton . then book the hilton ! for uk travellers . think of a blackpool bé&b.

Gal as s l Task: Hotel service
you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though

as very thin . service E- . let us book in at 8:30am ! for location and price . this ca n’t be beaten , but it is cheap
for a reason . if you come expecting the hilton . then book the hilton ! for uk travellers , think of a blackpool b&b.

Deriving Machine Attention from Human Rationales (Bao et al., 2018)




Core Attention Model

k;
(s
S8 = E—
a € R%
ng Xdp, ‘hili . . . )
Andrea X € R™*% Compatibility Distribution / Attention weights
Keys
Galassi

PhD
candidate
\ SU‘\’\J‘N of



xT

service was excellent ...
Input sequence
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General Attention Model
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Uses
* Embedding: the context is way smaller than the input

 Dynamic representation: if q changes, ¢ changes !
* Selection: the weights can be used to classify the keys

* Seq-to-seq models
* Interaction between two set of data (co-attention)
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Compatibility Functions
 Compute the energy scores

Relevance of a key

Similarity to g

Name Equation Reference

similarity flg,K) = sim(q,K) Graves et al., 2014
multiplicative ordot  [(q, K) = qTK Luong et al., 2015
scaled multiplicative  f(q, K) = ‘3;5_: Vaswani et al., 2017
general or bilinear  [(q, K) = qTWK Luong et al., 2015
biased general g, K)= K" (Wq-+b) Sordoni et al., 2016
activated general flg,K) = act(g"WK +b) Ma et al., 2017

concal flg,K) = wimpTact(W[K;q] +b) Luong et al., 2015
additive Mg, K) = wipp act( W1 K + Wag + b)  Bahdanan et al., 2015
deep (g, K) = wimp B 4 pL Pavlopoulos et al., 2017

EW = gt (W ECY 4 b
EW = get( W1 K + Wogq + bY)

Similarity to a
learned model w;,,

location-based

flg,K) = f(q)

Luong et al., 2015




Distribution Functions
* From energy scores to weights

Properties Sparsity Locality

Speeds up the | Selection Windows
computation Gaussians

Logistic sigmoid Softmax Sparsemax Hard/Local
Attention
0,7 0.8
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e Kim and Kim, 2018 Martins & Astudillo, 2016 Gregor et al., 2015;
ViV Luong et al., 2015;
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Xu et al., 2015; Yang et al., 2018
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Other topics

arrention | [arrenmion]  [AtenTion ) (arrenmion )
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* Seq-to-seq models L“\ |

* Interaction between ‘ H
two set of data (co-attention) .

Andrea * Multi-output attention
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e Perform attention mu
e Each time, one of the
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Multi-input attention: Co-attention
* If gis matrix? Two matrices of data: Kand Q

e Attention on both
* |nteractions between the two sets

° Coarse Gralned: Q UCQ Hierarchical question-
— Embedding of the other Vi) seston answering
K (Lu et al., 2016)
set
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Attentive Pooling Networks (dos Santos et al., 2016)



Multi-output attention
* More than one relevance distribution
— Change of parameters size

A structured self-attentive sentence embedding (Lin et al., 2017)

— Multiple attention in parallel: Multi-head attention

Attention is all you need (Vaswani et al., 2017)

— In classification task:
a different attention for each possible class

e Better error analysis

Interpretable emoji prediction via label-wise attention Istms (Barbieri et al., 2018)
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Supervised Attention

* Pre training, to model some knowledge
—  Detection of relevant parts

Rationale-augmented convolutional neural networks for text classification (Zhang et al., 2016)

e Attention as an auxiliary task

— Model specific knowledge
* Relevance information
Neural machine translation with supervised attention (Liu et al., 2016)

. Semantic information

Linguistically-informed self-attention for semantic role labeling (Strubell et al., 2018)

— Mimic an existing attention model:

Andrea Transfer Learning!

Galassi 1) Train attention model on a source task/domain
2) Use the this model for supervised learning on a target task/domain
Deriving machine attention from human rationales (Bao et al., 2018)
PhD Improving multi-label emotion classification via sentiment classification with dual attention transfer network (Yu et al., 2018)
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Conclusion

e Attention is nowadays a key component in neural
architectures

* Improves neural architectures, allowing also their
explanation, without increasing costs

* Populartrend in NLP and CV, but not only
— 40+ works EMNLP18
— 40+ works AAAI18

Andrea  _ 304 works IJCAI18
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This and much more on

Attention, please!
A Critical Review of
Neural Attention Models in NLP
Galassi A., Lippi M., Torroni P., 2019

https://arxiv.org/abs/1902.02181
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